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ABSTRACT 

Reinforced concrete (RC) structures are usually subjected to various natural hazards and 

environmental stressors during their lifetime. Over the time, structures are continuously aging 

and rapidly deteriorating in their lifecycle, becoming increasingly vulnerable to catastrophic 

failures after natural or manmade hazards. Corrosion of steel reinforcement has been identified 

as one of the major causes of deterioration in reinforced concrete structures. Chloride ingress 

is the dominant mechanism for initiation of deterioration in coastal regions or areas with high 

exposure to deicing salts. The chloride-induced crack initiation stage in deterioration process, 

which defines the end of functional service life for corroded RC structures has been 

investigated in this study. Crack initiation is governed by the expansion of corrosion products. 

It was found that crack initiation time is significantly affected by rate of corrosion, thickness 

of interfacial transmission zone (ITZ), composition of corrosion products, and mechanism of 

corrosion. Other factors which can also influence crack initiation time are the structure’s 

geometrical parameters such as concrete cover depth, rebar diameter and spacing, and concrete 

tensile strength. Different reinforced concrete structural components have been simulated 

using nonlinear 3-D finite element (FE) models in order to study their lifetime performance 

under corrosion. The developed FE models are validated with the available experimental tests. 

All of the corrosion effects on structural behavior of RC structures, such as reduction of steel 

cross sectional area, change of steel and concrete properties, as well as deterioration of bond 

have been implemented into the 3-D FE models. The structural performance of corroded RC 

beams is obtained through FE analysis. The results show that corrosion influences the strength 

and ductility of a structure at ultimate condition, and may also cause excessive cracking and 

deflection, which leads to serviceability failure.  
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Moreover, a large number of RC structures that suffer from corrosion mechanisms are 

located in high seismic risk areas, which leads to the necessity of investigating the combined 

effects of corrosion and earthquake in order to provide a more reliable prediction for the 

lifetime performance of RC structures in both corrosive and high seismic risk areas. Therefore, 

a comprehensive FE framework has been developed to study the structural response of RC 

columns under earthquake hazards while they are constantly exposed to chloride attack. This 

framework is capable of including all of the degrading effects due to chloride-induced 

corrosion and has been validated by a previous set of experimental test results. The extent of 

structural degradation has been updated as a function of time. Equivalent static analysis and 

nonlinear time history analysis have been conducted to evaluate the seismic performance of 

corroded columns at multiple time periods as well as under various hazard levels. The region, 

type and extent of damage have been identified. Full details of hysteretic loops, frequency 

variation, and cover crack propagation patterns have been obtained from the FE analysis. 

Furthermore, this study has also considered multiple seismic events occurring during the 

lifetime of RC structures. Detailed FE models that are able to transfer residual damage from 

previous earthquake to the next earthquake have been proposed. The extent of damage after 

each earthquake has been quantified. The result of this study shows that the corrosion can 

dramatically reduce the strength and stiffness of the column. Under severe earthquake, 

extensive corrosion may result in a brittle failure of the column without the development of 

concrete cracks. When a critical section of the column experiences a much higher corrosion 

risk, the seismic performance can be greatly compromised. Such columns could perform much 

worse than a column undergoing a consistent corrosion rate at a much older age, thus engineers 

must be alerted to draw special attention to those columns to prevent catastrophic failure during 
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seismic events. The outcome of this research will provide more reliable predictions for the 

lifetime performance of RC structures, thus help engineers and inspectors improve their 

designs, identify necessary test regions and define comprehensive inspection plans, while 

optimizing the rehabilitation strategies for RC structures under multi-threat areas. 
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

Civil infrastructure systems such as highway transportation networks are tied up, directly or 

indirectly, with every country’s economy in a major way. The state of nation’s civil 

infrastructure has also significant impacts on the safety and quality of living. Among various 

infrastructure components, the highway bridges play a key role in a transportation network and 

huge money is spent every year to ensure their functionality. Over the time, highway bridges 

are aging, rapidly deteriorating, and becoming increasingly vulnerable to the catastrophic 

failure during probable natural or man-made hazards. The deterioration of infrastructure has 

been of great concern in the United States in recent years. According to the ASCE Report Card 

for America’s infrastructure (2013), one out of four bridges in the U.S. are categorized as 

“structurally deficient” or “functionally obsolete” requiring significant cost in maintenance, 

rehabilitation and replacement. According to the National Bridge Inventory data (2011), there 

are more than 600,000 bridges in U.S. The most common material used in bridges is reinforced 

concrete (RC) forming 41.6% of the bridge population. The second most common type is steel 

bridges with 30.4% and prestressed concrete bridges rank third with 23.6%. It is evident that 

more than half of the bridges constructed in the U.S. are concrete bridges with an increasing 

trend over the next decade. On the other hand, the average age of the bridges in the U.S. is 42 

years while they are designed for a service life of 75 years. The large number of deficient 

bridges highlights the need for a better understanding of the effect of aggressive environments 

on their lifetime performance. 

One of the main causes of deterioration of concrete structures is the corrosion of the 

reinforcement. In coastal regions with airborne sea salt particles or in areas with harsh winters 
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and high exposure to deicing salts, chloride-induced corrosion is the dominant mechanism of 

deterioration. In general, there are three stages in the deterioration process of reinforced 

concrete structures due to chloride-induced corrosion. The first stage is corrosion initiation, 

governed by the intrusion of chloride ions. During this stage, the chloride ions penetrate into 

concrete. When the concentration of chloride reaches a threshold value, the reinforcing steel 

becomes depassivated and corrosion initiates, indicating the end of the first stage. The second 

stage is crack initiation, controlled by the expansion of corrosion products. After corrosion 

initiates, steel is consumed and corrosion products (rust) are formed at the interface zone 

between concrete and steel due to chemical reactions. Rust is a porous material with less 

strength and larger volume compared to the original steel consumed in the process, thus will 

gradually fill the porous area around the steel and then pressurize the surrounding concrete, 

leading to the initiation of concrete cracks and decrement of the bond between concrete and 

steel, which indicates the end of the second stage. In addition, some research shows that 

corrosion process not only reduce the cross sectional area of steel, but also decrease material 

strength of both concrete and steel. The third stage is crack propagation in concrete. The 

volume expansion of rust leads to crack propagation and finally spalling of concrete cover 

marking the service failure of the structure. In some cases this service failure is also associated 

with extreme capacity loss and limit state failure of the structure. Among the three stages, the 

first stage normally takes the longest time. It can take many years for chloride ions to initiate 

the corrosion process, depending on the influencing factors, such as water-to-cement ratio of 

concrete, thickness and quality of concrete cover, ambient temperature and relative humidity. 

The second stage is shorter than the first one, and also depends on many parameters, such as 

properties of concrete, composition of corrosion products, corrosion morphology and corrosion 
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rate. This stage defines the end of functional service life where repair or replacement is required 

for the corroded RC structures. The third stage is normally the shortest stage among the three. 

Because the depth of concrete cover is usually 50mm, once cracks are formed around the 

reinforcement, it will quickly propagate to the surface. Since the chloride-induced corrosion 

will significantly affect the serviceability and durability of RC structures, it is of great 

importance to understand the adverse effects of corrosion in reinforcement on structural 

behavior of reinforced concrete structures. The main features of corrosion effects include 

reduction of steel cross sectional area both in longitudinal and transverse reinforcement, 

reduction of strength and ductility in reinforcement, change in properties of concrete both in 

compression and tension, and deterioration of bond and its dependence on the corrosion level 

of reinforcement. The lifetime performance of corroded concrete structures can be assessed by 

the finite element modeling approach. A finite element model which is capable of capturing 

all the corrosion effects discussed above is in great demand. By investigating the corrosion 

process and its effect on the structural behavior of RC structures, this study aims to provide an 

explicit approach to predict the time to crack initiation, as well as a detailed finite element 

framework to predict the lifetime performance of corroded RC structures.  

Moreover, since earthquakes are one of the major natural hazards that impact civil 

structures, leading to enormous economic loss, and a large number of RC structures that suffer 

from corrosion mechanisms are located in high seismic risk areas, it is essential to study the 

structural response of RC structures under both corrosion and earthquake. The goal of this 

study is to provide a detailed and comprehensive framework that is capable of implementing 

the time-dependent structural degradation due to chloride-induced corrosion and capturing the 

response details including damage extent to give a more accurate and reliable prediction for 
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the lifetime performance of RC structures in multi-threat regions, so that the outcome of this 

research will help engineers improve their designs, help inspectors identify necessary test 

regions and define comprehensive test plans, as well as help decision makers optimize 

rehabilitation strategies under multi-threat scenarios. 

Corrosion-induced concrete cover cracking and its initiation time are studied in the 

second chapter. This chapter starts with a critical review of the analytical and numerical models 

to predict crack initiation time under both uniform and pitting corrosion, followed by a 

parametric study on the effect of different parameters on the crack initiation time. Three 

dimensional (3-D) nonlinear finite element models have been proposed to conduct a sensitivity 

analysis on the effect of different parameters on the pattern of crack propagation throughout 

concrete cover for both uniform and pitting corrosion.  

Chapter 3 studies the nonlinear model of bond between steel and concrete, and the 

model of bond deterioration under different corrosion levels of reinforcement. 3-D nonlinear 

finite element models which are capable of capturing all the main features of corrosion effects 

have been developed to investigate the lifetime structural performance of corroded RC beams.  

Chapter 4 investigates the structural response of reinforced concrete highway bridge 

columns under earthquake hazards while they are continuously subjected to chloride-induced 

corrosion. The proposed FE models have been validated by a previous set of experimental test 

results. The extent of structural degradation has been calculated over the entire life of the bridge. 

Nonlinear pushover and time history analysis have been conducted to investigate the seismic 

performance of corroded RC columns at various time during their lifecycle. 

Chapter 5 focuses on the development of the framework that is able to evaluate the life 

cycle performance of RC bridge columns that are subjected to multiple seismic events at 
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different time periods while they are constantly subjected to chloride attack. A series of 

earthquake case scenarios have been developed to investigate the structural behavior when the 

column experiences two earthquake events at different time periods during its lifetime. The 

extent of damage has been successfully quantified through FE analysis. 

Chapter 6 summarizes the findings of this study and the major contributions of the 

research. 
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CHAPTER 2. CONCRETE COVER CRACKING AND SERVICE 

LIFE PREDICTION OF REINFORCED CONCRETE 

STRUCTURES IN CORROSIVE ENVIRONMENTS 

A paper accepted by the journal of Construction and Building Materials 

Zhen Cui, Alice Alipour 

2.1 Abstract 

Crack initiation of concrete cover due to corrosion defines the end of functional service life 

where repair or replacement is required for corroded reinforced concrete (RC) structures. This 

study provides a comprehensive and critical analysis for the analytical and numerical models 

of corrosion-induced cover crack initiation for both uniform and non-uniform corrosion. The 

efficiency and applicability of the existing models have been analyzed. Recommendations on 

how to select proper models to estimate crack initiation time have been provided. Moreover, 

parametric studies are conducted to investigate the effects of different factors on crack 

initiation time and crack propagation patterns using three dimensional nonlinear finite element 

(FE) models. The results show that the type of corrosion products, thickness of interfacial 

transition zone and rate of corrosion are the parameters that affect crack initiation time the 

most significantly. The developed FE models are able to study crack initiation and propagation 

for both uniform and non-uniform corrosion, as well as quantify the extent of concrete damage 

due to cracks. The FE results show that crack patterns under uniform and non-uniform 

corrosion differ. Under uniform corrosion, the major crack occurs vertically in the cover. But 

under non-uniform corrosion, the two major cracks form diagonally at the location of the pit 

in the cover. The vertical crack appears later and then becomes the third major crack. The 

results also show that non-uniform corrosion causes high concentrated pressure at the pits 
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which would lead to earlier cover cracking. Assuming uniform corrosion may result in 

unconservative service life estimation. The outcome of the research provides a reliable 

approach to predict corrosion-induced cover crack initiation and propagation for RC structures.  

Keywords: corrosion, concrete cover cracking, finite element analysis, uniform and non-

uniform corrosion 
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2.2 Introduction 

The deterioration of infrastructure has been of great concern globally in the recent decades, as 

the infrastructure is aging, rapidly deteriorating, and becoming increasingly vulnerable to 

catastrophic failures during probable natural or man-made hazards. One of the main causes of 

deterioration of concrete structures is the corrosion of reinforcement (Cairns et al. 2005, Val 

and Chernin 2009, Apostolopoulos et al. 2013). In coastal regions with airborne sea salt 

particles or areas with harsh winters and high exposure to deicing salts, chloride-induced 

reinforcement corrosion is the dominant mechanism of deterioration. In general, there are three 

stages in the deterioration process of reinforced concrete (RC) structures due to chloride-

induced corrosion. The first stage is corrosion initiation, governed by the intrusion of chloride 

ions. The alkaline environment of concrete surrounding reinforcing steel results in the 

formation of a passive film at the steel surface, which can protect the steel from corrosion. 

When chloride ions penetrate into the concrete and their concentration reach a threshold value, 

the PH value changes and the protective film on the reinforcing steel becomes depassivated 

and corrosion initiates. This is the end of the first stage. The second stage is crack initiation, 

controlled by the expansion of corrosion products. After corrosion initiates, steel is consumed 

and corrosion products (rust) are formed at the interface zone between concrete and steel due 

to chemical reactions with the presence of both moisture and oxygen. Rust is a porous material 

with less strength and larger volume compared to the original steel consumed in the process, 

thus will gradually fill the porous area around the steel and then pressurize the surrounding 

concrete, leading to initiation of concrete cracks when the tensile stress exceeds the tensile 

strength of surrounding concrete and decrement of the bond between concrete and steel, which 

indicate the end of the second stage. The third stage is crack propagation in concrete. The 
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volume expansion of rust leads to crack propagation and eventually spalling of concrete cover 

marking the service failure of structures. In some cases this service failure is also associated 

with extreme capacity loss and limit state failure of structures. Among the three stages, the first 

stage normally takes the longest time. It can take many years for the corrosion process to 

initiate, depending on the influencing parameters. The second stage defines the end of 

functional service life where repair or replacement is required for corroded RC structures. The 

third stage is the shortest stage among the three. Because the depth of concrete cover is usually 

50mm, once cracks are formed around the reinforcement, it will quickly propagate to the 

surface. Since crack initiation of concrete cover caused by corrosion is a critical point in 

evaluating the service life of corroded RC structures, it is very important to be able to predict 

crack initiation time with sufficient accuracy.  

Extensive research has been conducted on corrosion initiation subjected to various 

exposure conditions (Shafei et al. 2012 and 2013, Shafei and Alipour 2015a and b), as well as 

capacity assessment, cyclic response and fragility analysis under different levels of corrosion 

(Alipour 2010, Alipour et al. 2011, 2012 and 2013, Hanjari et al. 2011, Alipour and Shafei 

2014, Cui and Alipour 2014, Kashani et al. 2016a and b, Ni Choine et al. 2016, Rao et al. 

2017a). Experimental tests have been conducted to investigate corrosion-induced crack 

initiation (Andrade at al. 1993, Liu and Weyers 1998, Mangat and Elgarf 1999, Torres-Acosta 

and Sagues 2004, EI Maaddawy et al. 2005, Mullard and Stewart 2011, Lu et al. 2011, Cornelli 

et al 2013, Michel et al. 2014), as well as many models have been proposed to predict the crack 

initiation (Bazant 1979, Molina et al. 1993, Liu and Weyers 1998, EI Maaddawy and Soudki 

2007, Chernin and Val 2011, Lu et al 2011). Most of the models have been developed and 

calibrated based on limited test data, thus it is hard to identify the efficiency of those models, 
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causing problems when selecting the proper model to estimate the corrosion-induced crack 

initiation. There are a few articles that reviewed some models available in the literature (Reale 

and O’Connor 2012, Jamali et al. 2013), however, the articles were more focused on 

summarizing the previous models and commenting on the models without developing any new 

methodology to further investigate crack initiation. The models being reviewed do not include 

the recently proposed crack initiation models and are for uniform corrosion only. Numerical 

models have also been proposed in the literature (Molina et al. 1993, Chen and Mahadevan 

2008, Chernin and Val 2011, Chen and Leung 2015). Some of these models are used for crack 

propagation and some of them are used for parametric study of the factors affecting crack 

initiation. However, no numerical models studied both crack propagation and influencing 

parameters on crack initiation. Moreover, most of the numerical methods are focused on one 

type of corrosion only, either uniform or non-uniform. This paper aims to provide a critical 

and comprehensive analysis for the accuracy and applicability of the existing models 

predicting crack initiation time in the literature for both uniform and non-uniform corrosion, 

furthermore, to develop an explicit and reliable finite element (FE) approach to investigate 

crack initiation and propagation for the two types of corrosion. Moreover, based on the 

developed FE models, parametric studies are conducted in order to assess the effects of 

different parameters on corrosion-induced concrete cover cracking, as well as the crack 

propagation patterns for uniform and non-uniform corrosion.  

To study the corrosion-induced concrete cover cracking, the following sections will be 

presented in this paper: i) a critical review for the major analytical models of crack initiation 

in the literature for both uniform and non-uniform corrosion, ii) an overview and comparison 

of existing numerical models for both types of corrosion, iii) the development of proposed FE 
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models for both types of corrosion and the validation, iv) parametric study of factors that affect 

crack initiation, v) parametric study for crack propagation under uniform corrosion, and vi) 

crack propagation of non-uniform corrosion. The outcome of this study will provide a solid 

approach for reliable assessment of the effects of corrosion-induced cracking on the 

performance of RC structures in the absence of field observations or experimental data. 

2.3 Corrosion-induced concrete cover cracking models 

A large number of models have been proposed to predict the time to crack initiation, which 

can be generally divided into three categories: empirical models (Andrade et al. 1993, 

Rodriguez et al. 1996, Torres-Acosta and Sagues 2004), analytical models (Bazant 1979, Liu 

and Weyers 1998, EI Maaddawy and Soudki 2007, Yuan and Ji 2009, Chernin et al. 2010, Lu 

et al 2011, Reale and O’Connor 2012) and numerical models (Molina et al. 1993, Ožbolt et al. 

2012, Du et al. 2014, Chen and Leung 2015). The empirical models are normally based on 

regression analysis of the experimental data and involve simple mathematical equations and 

the determination of controlling parameters. Analytical models are mainly based on cracking 

mechanics, involving more parameters and mechanistic considerations.  

This section gives a critical overview of existing analytical models of cover cracking, 

discusses the characteristics of each model, and provides recommendations for applying proper 

models to estimate the time to crack initiation. In the literature, there are two common types of 

analytical models to predict the time to crack initiation: the thick-walled uniform cylinder 

model (TWUC) and the thick-walled double cylinder model (TWDC) (Figure 2-1).  The 

TWUC model assumes the concrete as a single layer, the thickness of which is equal to the 

thinnest concrete cover. The TWDC model divides the concrete into two parts: a cracked inner 

cylinder and an un-cracked outer cylinder. 
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Previous research suggests that not the whole corrosion products contribute to the 

expansive pressure on the concrete. In fact, some diffuse into the voids and pores of the 

concrete medium. It has been reported that there is an interfacial transition zone (ITZ) around 

the steel bar (Al Khalaf and Page 1979, Liu and Weyers 1998, Michel et al. 2011). The 

corrosion products only exert expansive pressure on the surrounding concrete after this 

interfacial transition zone is filled. Therefore, the crack initiation time can be treated as the 

time required for corrosion products to fill the interfacial transition zone and then apply internal 

pressure to the surrounding concrete until the first crack appears (Figure 2-2). The next stage 

– crack propagation is the time when additional tensile stress builds up, resulting in cracks 

appearing on the concrete cover and propagation of cracks that results in spalling. Depending 

on the service design requirements, a crack width of 1.0 to 3.0mm would mark the service 

failure of the concrete member (Vu et al. 2005, Washington State Bridge Inspection Manual 

2015). 

Bazant (1979) was the first to use a TWUC model to predict the time to cover cracking, 

considering concrete around a steel bar as a thick-walled cylinder subjected to an expansive 

pressure created by the formation of corrosion products. The stress in the cylinder wall is 

calculated based on plane strain linear elasticity theory. In this model, the concrete is presented 

as a homogenous linear elastic material. The rust expansion is modeled by a uniform increase 

in the diameter of the hole around the steel bar. It is assumed that the rate of rust production is 

constant. This model has been used extensively in the literature to estimate crack initiation 

time. Later on, comparisons were made with experimental data and it was shown that the model 

underestimated the time to crack initiation (Liu and Weyers 1998, Chernin and Val 2011). This 



www.manaraa.com

13 
 

mostly attributes to the fact that this model ignores the ITZ around the rebar and all of the 

corrosion products contribute immediately to the expansive pressure. 

To overcome this issue, Liu and Weyers (1998) modified this model by including the 

ITZ around the rebar in their calculations. They conducted a series of corrosion experiments 

on 44 concrete slabs over five years and updated the model based on their observations. In this 

model, corrosion products first fill the ITZ during the free expansion period and after this zone 

is filled, the internal pressure is exerted on the surrounding concrete. The concrete around the 

steel bar is homogeneous elastic and considered as a thick-walled cylinder. It is assumed that 

the rate of rust production decreases with time, since the diffusion distance of ionic iron 

increases as the rust layer becomes thicker. The introduction of the ITZ divides the critical 

amount of corrosion products into two parts: the amount of corrosion products required to fill 

the ITZ around the interface between steel and concrete, and the amount of corrosion products 

generating tensile stress to cause concrete cracking. Similar to Bazant’s model, the stress 

required to cause the cracking of concrete cover is equal to the tensile strength of concrete, 

except that the diameter d is replaced by d+2δ to reflect the inclusion of the ITZ (δ is the 

thickness of the ITZ).  

In another study, EI Maaddawy and Soudki (2007) noted that assuming a reverse 

relationship between rust production and time underestimates the steel mass loss and thus 

overestimates the crack initiation time. To address this issue, they updated the previous model 

with the consideration of a constant rate of rust production. They merged both of the two above 

approaches, using the thick wall uniform cylinder model with an ITZ around a steel bar, but 

keeping the constant rate of rust production. 
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A more recent study by Wong et al. (2010) reported that most cracks near the interface 

between concrete and steel were completely filled with corrosion products, and cracks further 

away are partially filled or had surfaces lined with corrosion products. Therefore, when 

developing the corrosion-induced concrete cracking models, the effect of a fraction of 

corrosion products penetrating into these radial cracks on cover cracking time needs to be taken 

into account. Lu et al. (2011) developed a mathematical model taking into consideration the 

penetration of rust into open cracks to predict time to cracking for both accelerated and long 

term natural corrosion. To develop this model, they assumed that concrete is an isotropic linear 

elastic material which is treated as a thick-walled cylinder around the steel (similar to the 

previous model). The corrosion process is considered uniform resulting in a uniform radial 

expansive pressure. The ITZ around the steel-concrete interface is taken into account and 

during the progress of crack front, some corrosion products diffuse into radial corrosion cracks. 

In this model, the required amount of corrosion products at the onset of full cracking of 

concrete cover is calculated with two distinct components: i) the amount of corrosion products 

required for full cover cracking without taking into consideration corrosion products 

penetrating into corrosion cracks. In this case, the corresponding radius loss of steel and time 

are Δdst1/2 and t1, respectively. ii) the amount of corrosion products accumulated in the radial 

cracks during the progress of crack front. The corresponding radius loss of steel and time are 

Δdst2/2and t2, respectively. Therefore, the total time since corrosion initiation to cover cracking 

is t1+t2. 

When developing the crack initiation models, some researchers assume that the 

mechanical properties of rust is similar to those of steel, making the elastic modulus of steel 

and rust much larger than that of concrete, thus the deformations of steel and rust could be 
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neglected (Liu and Weyers 1998, EI Maaddawy and Soudki 2007). While other researchers 

assume that the mechanical properties of rust are approximately equal to those of liquid water 

(Molina et al 1993). Lu et al. (2011) analyzed the influence of mechanical properties of rust on 

the critical steel loss percentage that causes cover cracking and showed that the critical 

percentage is constant when the modulus of rust is greater than 1GPa. Since it is widely 

accepted that the modulus of rust is greater than 1GPa, the deformation of rust is neglected in 

their model. 

The thick-walled double cylinder (TWDC) model considers the concrete cylinder to be 

partitioned into two parts: a cracked inner cylinder and an un-cracked outer cylinder (Figure 

2-1b). Li et al. (2006) modeled the cracked concrete in the inner cylinder as an anisotropy 

material but only reducing the elastic modulus in the tangential direction. Pantazopoulou and 

Papoulia (2011) considered the tangential stiffness of the inner cylinder concrete changed 

gradually but without giving a clear analytical solution. Based on the two TWDC models, 

Chernin et al. (2010) resolved their problems and proposed their TWDC model assuming that 

the concrete in the inner cylinder is orthotropic inhomogeneous linear elastic and the concrete 

in the outer cylinder is isotropic linear elastic.  They claim that the critical radial pressure that 

causes cover cracking, pcr, is overestimated in TWUC models due to the assumption that the 

concrete in tension is perfectly plastic. This results in not considering the reduction of radial 

tensile stress after the development of partial radial cracks. They also account for part of 

corrosion products penetrating into concrete pores and microcracks before full cover cracking 

by introducing an equivalent thickness. The results of this study shows that the amount of 

corrosion products penetrating into concrete pores before full cover cracking may be higher 

than the ones assumed in previous models such as Liu and Weyers (1998). However, compared 



www.manaraa.com

16 
 

to TWDC models, the TWDC model is more complicated, requiring more computational 

efforts. The advantage of accounting for part of corrosion products penetrating into concrete 

pores and microcracks can also be achieved by using the TWUC model developed by Lu et al 

(2011). 

In order to compare different predictive models, the time to crack initiation is calculated 

using three selected analytical models for five experimental tests. The predicted crack initiation 

time is then compared with the observed crack initiation time from experiments. The results 

are summarized in Table 2-1. The data in typed in italic shows the calculated crack initiation 

time compared with their own experimental result. It can be seen from this table that the 

predicted time using the model developed by Lu et al. (2011) shows a relatively good 

agreement with the experimental results except the experiment by Liu and Weyers (1998). This 

may be due to the reason that the model of Lu et al. (2011) is developed for accelerated 

corrosions, but the experiments of Liu and Weyers (1998) are under long-term corrosion 

conditions, which may also explain the reason for the discrepancy between the observed time 

and the predicted time from EI Maaddawy and Soudki (2007) for the experiments of Liu and 

Weyers (1998). The accuracy of the predicted time may be also related to the geometry of the 

specimens in the test from which the model is developed, such as the rebar arrangement in the 

test specimen. For example, it can be seen that the predicted time for the experiment of Vu et 

al. (2005) calculated from the model by Liu and Weyers (1998) is more accurate compared 

with the ones from the other models. This may be because both the experiments of Vu et al. 

(2005) and Liu and Weyers (1998) are using test specimens that have five embedded rebars, 

whereas the experiments of Andrade et al. (1993) and Lu et al. (2011) are only involving a 
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single rebar in concrete and the experiment of EI Maaddawy and Soudki (2007) involves two 

rebars embedded in concrete. 

It can be concluded from above that there is no such model that can predict the crack 

initiation for all types of structural members and environmental conditions. The predictive 

models are developed based on the results from particular experimental tests and normally 

provide more reasonable results for the situation that is similar to the test conditions. For other 

conditions, the model might give inconsistent results. Furthermore, the value of the predicted 

time is highly dependent on the value of the input parameters, such as properties of concrete, 

diameter of reinforcement, depth of concrete cover, thickness of interfacial transition zone, as 

well as the volumetric ratio of the rust. The volumetric ratio and the density of the rust vary 

with the types of corrosion products, which depend on the environmental conditions. The 

thickness of ITZ varies with the environment and a reliable method to measure the ITZ 

thickness has been lacking (Michel et al. 2011). Such factors introduce significant uncertainties 

into the prediction of crack initiation time, which result in large scatter in predictions of the 

crack initiation time. 

Most of the analytical models have assumed uniform expansion of corrosion products, 

which are only applicable to uniform corrosion. However, for chloride-induced corrosion in 

natural environment, corrosion products are more likely to form locally and tend to accumulate 

at the steel-concrete interface facing the concrete surface and more probably leads to pitting 

corrosion (Cao et al. 2013, Cao and Cheung 2014). This will result in higher concentrated 

pressure on the side facing concrete cover causing faster corrosion progress, and requires a 

more precise simulation of the non-uniform corrosion-induced cover cracking. Experimental 

studies have been conducted to investigate pitting corrosion. Kashani et al. (2013) conducted 
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pitting pattern analysis using a stochastic approach. Apostolopoulos et al. (2013) stuided the 

pit depths and areas for both bare and embedded steel bars. In order to investigate the 

distribution of rust and corroded steel, Yuan and Ji (2009) conducted corrosion tests for 

reinforcement embedded in concrete under artificial climatic environments. It is found that 

most of corrosion products distributed on the half circumference of the steel bar that faces the 

concrete cover (Figure 2-3a). Very few corrosion products are found at another half which was 

away from the concrete cover. The shape of rust distribution can be defined as a half elliptical 

curve. The distribution of corroded steel is proportional to the thickness distribution of 

corrosion products due to the expansive nature of corrosion products. Based on this test result, 

the distribution of rust for side located steel bar before crack initiates can be described using 

the following expression (in polar coordinates, Figure 2-3b) (Du et al. 2014): 

ఏݎ߂ ൌ ൝
ሺோା௱ሻሺோା௱ೌೣሻ

ඥሺோା௱ሻమ௦మఏାሺோା௱ೌೣሻమ௦మఏ
െ ܴ									0  ߠ  180°

180°																																																												ݎ߂  ߠ  360°
                                      (2-1) 

where R is the original radius of the steel, Δrθ is the radius increase at angle θ, Δrmax is the 

maximum radius increase and Δrmin is the minimum radius increase. It is obvious that the radius 

increase Δrθ= Δrmax when θ=900, i.e., nearest to the concrete cover, and Δrθ= Δrmin for the side 

away from the concrete cover. The radio of Δrmax/Δrmin determines the shape of the half ellipse 

curve. For uniform corrosion, Δrmax/Δrmin is equal to one. 

Since the steel loss of the rebar is proportional to the distribution of the rust layer, based 

on the analytical model developed by Malumbela et al. (2011), the critical maximum radius 

increase at crack initiation can be calculated as 

௫ݎ߂ ൌ
ሺఒିଵሻோ௱ೞమିଶఋሺଶோାఋሻ

ோାఋ
                                                                                             (2-2) 
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where Δrst2 is the critical maximum radius loss of steel at crack initiation and λ is the volumetric 

ratio, i.e., the ratio of the volume of corrosion products to that of the consumed steel. This 

equation is only valid when the ITZ is fully filled or when the numerator of the equation is 

positive. 

Another analytical model for non-uniform corrosion-induced cover cracking is 

developed by Xia et al. (2012). The model utilizes the complex variable method of 

Muskhelishvili, which is capable of providing the stresses in concrete surrounding the steel bar 

at the typical locations: in the middle (side located bar) and at the corner (corner bar). The 

stresses for the corner bar are calculated from the superposition of stress states of two middle 

bars. The sides that the two middle bars are close to, respectively, are perpendicular to each 

other.  

Most of the analytical models for non-uniform corrosion are developed in recent years 

and were based on experimental tests. The majority of them all agree that the rust distribution 

can be modeled as a half elliptical curve. However, the analytical models are normally 

developed in two dimensions. Due to the spatiality of pitting corrosion distribution, to obtain 

an accurate prediction for crack initiation and propagation, it is essential to study cover 

cracking under non-uniform corrosion in three dimensions. Only a few experimental and 

numerical studies have considered that, which will be discussed in Section 2.4. 

2.4 Existing numerical models 

Finite element modeling allows the flexibility of geometric complexities as well as material 

properties and can provide predictions of corrosion-induced cover cracking, thus can give an 

alternative way to investigate crack initiation and propagation besides experimental tests, 

reducing costs of the tests.  
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A number of numerical models using a finite element (FE) approach have been 

proposed in the literature to predict corrosion-induced concrete cover cracking (Dagher and 

Kulendran 1992, Molina et al. 1993, Yokozeki at al. 1997, Toongoenthong and Maekawa 2005, 

Zhou et al. 2005, Chen and Mahadevan 2008, Val et al. 2009, Ožbolt et al. 2012, Du et al. 

2013, Cao 2014, Chen and Leung 2015) (see Table 2-2). The rust accumulated effect is 

normally modeled by uniform or non-uniform internal pressure, uniform or non-uniform radial 

displacements or thermal analogy. Most of these studies use two dimensional (2D) models 

(Dagher and Kulendran 1992, Molina et al. 1993, Yokozeki at al. 1997, Toongoenthong and 

Maekawa 2005, Zhou et al. 2005, Val et al. 2009, Du at al. 2013, Chen and Leung 2015), with 

a few using three dimensional (3D) models (Chen and Mahadevan 2008, Ožbolt et al. 2012, 

Hanjari et al. 2013, Coronelli et al. 2013, Cao 2014). The focus of some studies are to model 

concrete cracking around one steel bar (Molina et al. 1993, Chen and Mahadevan 2008, Michel 

et al. 2014 and 2016, Chen and Leung 2015) while other studies model cover cracking around 

multiple steel bars embedded in concrete (Dagher and Kulendran 1992, Yokozeki at al. 1997, 

Toongoenthong and Maekawa 2005, Zhou et al. 2005, Val et al. 2009, Ožbolt et al. 2012, Du 

at al. 2013). A few non-FE numerical models such as 2D mesoscale models considering 

heterogeneous nature of concrete have been developed in the literature as well (Šavija et al. 

2013, Du et al. 2014). 

Molina et al. (1993) was one of the few to model the effect of rust production by 

applying a thermal load on the interface between steel and concrete. In this study, steel and 

rust are considered as one material with properties changing linearly with time from steel 

properties to rust properties. The FE results compared to their own experimental results shows 

some agreement between FE and test results. The discrepancy is attributed to the neglecting of 
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rust penetration into concrete pores and cracks. Another study by Yokozeki at al. (1997) also 

assumed linear reduction of Young’s modulus of steel with time after corrosion initiation. They 

estimated the rate of rust production based on water content, cement type, concrete cover and 

compressive strength. Assuming rust production rate is constant, the critical amount of 

corrosion products to cause concrete cracking are calculated based on regression analysis of 

multiple FE results. The results from the regression equation are then compared with 

experimental results in the literature, showing a relatively good agreement. Zhou et al. (2005) 

simulated corrosion-induced concrete cracking by imposing a uniform radial displacement 

around the surface of the steel bar. The damaged plasticity model, which uses isotropic 

damaged elasticity in combination with isotropic tensile and compressive plasticity (ABAQUS 

2012) is selected to model concrete. In another study, Toongoenthong and Maekawa (2005) 

developed a 2D FE model which considers the diffusion of corrosion products into concrete 

cracks and obtain a better agreement between FE and experimental results. Their model utilizes 

joint interface elements to model the interfacial zone between steel and surrounding concrete. 

In the normal direction, the interface elements have large stiffness in the closure mode and 

small stiffness in the opening mode. In the transverse direction, these elements have zero 

stiffness. The study by Chen and Mahadevan (2008) developed a 3D FE model in ANSYS to 

investigate the corrosion-induced concrete cracking. Only the concrete around the steel is 

modeled in their simulation. The rust expansion is characterized by a time-varying radial 

displacement boundary condition. The smeared crack approach is adopted to model the 

cracking. Hanjari et al. (2013) proposed nonlinear 3D FE models using the program DIANA 

to study crack patterns and structural effects under high levels of reinforcement corrosion. The 

applied corrosion model considered the flow of rust through concrete cracks. Solid pyramid 
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elements were used for both concrete and reinforcement. Concrete material was modeled by 

smeared rotating crack model. Michel et al. (2014) modeled the corrosion-induced crack 

explicitly with a 2D FE model in TNO DIANA. The concrete, steel, corrosion layer and crack 

interface were all modeled. Crack widths were then obtained by FE analysis. 

It is noted that most of the numerical models use the 2D plain strain assumption and 

some of the models are developed without validation against experimental tests. Moreover, 

most of studies have assumed a uniform corrosion process and are based on the results obtained 

from accelerated corrosion tests using electrical current in laboratories. However, chloride-

induced corrosion in natural environment leads to pitting corrosion. In recent years, numerous 

effects have been made to develop numerical models for cover cracking under non-uniform 

corrosion. 

Du et al. (2014) developed a 2D numerical model to explore the cracking behavior of 

concrete cover under non-uniform corrosion by applying a radial displacement with a half 

ellipse shape on the hole in the concrete. The ratio of maximum to minimum displacement is 

taken as 20-30. The model involves concrete material only, and the concrete is modeled as a 

heterogeneous material on the meso-scale. The FE model proposed by Du et al. (2006) 

simulates rust expansion by applying a nearly elliptically distributed radial displacement for 

non-uniform corrosion in addition to a uniform radial displacement for uniform corrosion. The 

ratio of maximum to minimum displacement applied to the hole is a constant, which is equal 

to five. Jang and Oh (2010) proposed a 2D FE model to study the cracking pressure with 

different pitting factors under non-uniform corrosion. The rust expansion is simulated by 

applying a non-uniform radial pressure on the concrete hole. The distribution of pressure varies 

according to the value of the pitting factor (αp=1, 2, 4 and 8). The 2D model developed by 
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Chen and Leung (2013) includes concrete, steel bar as well as rust. The non-uniform cover 

cracking is simulated by the discrete crack model. The interaction between concrete and rust 

is modeled by interface elements with cohesion and a friction coefficient. Most of numerical 

models for non-uniform corrosion are developed in two dimensions only. Very few numerical 

studies consider three dimensional pit shapes, such as Hingorani et al. (2013) and Li et al. 

(2014), but focus on non-uniform corrosion effect on the properties of corroded steel. However, 

due to the spatial nature of pit distribution, it is necessary to model the cover cracking under 

non-uniform in three dimensions in order to attain a more accurate prediction. In this study, a 

3D FE model is developed and is capable of considering the spatial distribution of corrosion 

pits. The details of the FE models will be discussed in the next section. 

Currently, there are three ways to model the effect of rust expansion: radial pressure, 

radial displacement and thermal analogy. For modeling uniform corrosion, uniform expansion 

of rust leads to uniform stresses or displacements only for the symmetric structures with 

symmetric boundary conditions. For the cases with asymmetric boundary conditions, such as 

the steel bar at the corner, the radial pressure or displacement caused by rust expansion is not 

uniform. Hence applying a uniform stress or displacement will lead to erroneous results. 

Chernin and Val (2011) developed 2D FE models to estimate the critical increase in the 

diameter of a corner bar in a fragment of a RC slab using the three approaches. The results 

show that applying radial pressure or displacement will significantly overestimate the critical 

increase in the diameter that induces cover cracking. In addition, with the application of radial 

pressure or displacement method, steel is not included in the model. This will not allow the 

consideration of the interaction between steel and concrete. And also, when the steel is not 

simulated, the model is only correct under no external loading. With the thermal analogy 
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method, which utilizes the increase of temperature to expand the steel volume to simulate the 

radial expansion, the boundary condition issue will be overcome. Moreover, since the steel is 

also modeled, the simulation will be capable of considering the steel-concrete interaction that 

may affect the crack initiation and propagation, as well as considering the cracking under 

loading conditions.  Therefore, the equivalent thermal analogy is adopted in this study to model 

the rust expansion. 

2.5 The proposed finite element model and its validation 

Finite element models are proposed in this paper in order to predict the time from corrosion 

initiation to crack initiation. In order to validate the FE models, the results in this paper will be 

compared to the experimental results. Andrade et al. (1993) conducted a series of the 

experimental tests on small RC beams which were corroded by an impressed current, in order 

to study the crack initiation time. The specimen in the test are 150mmൈ150mmൈ380mm 

concrete cubes. A 16mm single rebar is embedded in each cube with a cover depth of 20mm. 

The tensile strength of concrete is 3.55MPa. The time from corrosion initiation to the first 

visible crack according to the experiment is 96 hours. A three dimensional FE model has been 

developed in ABAQUS (69) (Figure 2-4a). The damaged plasticity model is used for concrete 

elements in the model. The damaged plasticity model takes into consideration the degradation 

of the elastic stiffness induced by plastic straining both in tension and compression. It assumes 

that the two main failure mechanisms are tensile cracking and compressive crushing. The steel 

is modeled as a linear elastic material with a Young’s modulus of 200GPa and a Poisson’s ratio 

of 0.33. The steel and concrete are assumed to be perfectly bonded. The expansive nature of 

corrosion products is modeled by thermal analogy. The increase of the rebar diameter due to 

formation of rust products can be calculated as follows: 
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∆݀ ൌ  (2-3)                                                                                                                              ݀ܶߙ

where d is the original diameter of the steel bar, T is temperature, and α is the thermal expansion 

coefficient of steel, taken as 1.17ൈ10-5m/(m∙K). In the FE model, the increase of temperature 

in the steel is achieved by defining a temperature field in the rebar. The temperature in the steel 

increases linearly with time causing the increase of the rebar diameter. 

After applying the thermal expansion, the crack initiation time has been calculated to 

be 81 hours, a little bit shorter than the experimental results (96 hours). The reason for the 

discrepancy between the FE result and the test result can be that the critical time in the test is 

the time to the first visible crack, which according to the test, is about 50μm in width appearing 

on the surface of the concrete, but the critical time based on FE analysis is the time when the 

maximum principle tensile stress exceeds the tensile strength of concrete in the first element, 

which is near the steel-concrete interface. The tensile strength corresponds to the start of micro-

cracking in concrete. The formation of micro-cracks is represented macroscopically with a 

softening stress-strain behavior beyond the tensile strength. Therefore, it is earlier than the time 

to the first visible crack in the experimental test where it is detected on the surface of the 

concrete. 

Cracks occur in the direction which is perpendicular to the maximum principal strain. 

Figure 2-4b shows the crack pattern in terms of maximum principle strains. It can be seen from 

this figure that the main crack occurs in the vertical direction in the top cover of concrete, and 

the secondary cracks are in the direction of 135 and -135 degrees with respect to the vertical 

axis. This result matches the result from the model by Andrade et al. (1993). 

The experimental test on RC beams by Dong et al. (2011) is selected to validate the 

applicability of our FE models in cases with multiple embedded bars. In their study, a 
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240mmൈ200mmൈ130mm concrete specimen with three 16mm reinforcement was tested in 

accelerated conditions. The spacing between the reinforcement is 60mm. The concrete cover 

depth is 32mm. The material properties of concrete are ft=1.92MPa, fc’=31MPa, Ec=26200MPa 

and ν=0.18. The FE model of the test specimen is shown in Figure 2-5a. The same assumptions 

as the previous case are used to model the concrete, steel and their interface, as well as the rust 

expansion mechanism. The crack pattern is shown in Figure 2-5b. It can be seen that the crack 

pattern obtained from the FE model is similar to the one obtained from the experimental test 

(Figure 2-5c). This validated FE model is selected for further parametric studies in the next 

two sections.  

For non-uniform corrosion, corrosion pits can be irregular, conical, spheroidal, 

cylindrical, or a transitional shape. For reinforcement subjected to chloride attack, spheroidal 

pits are the major pit shape (Xu and Qian 2013). Therefore, the pit shape in both transverse 

and longitudinal directions is considered as a half elliptical shape. And the three dimensional 

pit is modeled as a half ellipsoid characterized by its semi-axes: pit length, width and depth. 

Some research shows that the surface diameter of a natural pit of a metal is often equal to or 

smaller than the pit depth (Codaro et al. 2002). Zhang et al. (2011) assumes the rust distribution 

as a half elliptical curve in both radial and longitudinal directions based on plenty of their 

inspections (Figure 2-6). 

The number of numerical models considering three dimensional pit shapes is very 

limited. In this study, a three dimensional finite element model is developed to investigate the 

effect of non-uniform corrosion on cracking behavior of concrete cover. The dimension of the 

FE model is the same as the one shown in Figure 2-4a. The damaged plasticity model is adopted 

for concrete elements. The expansive behavior of corrosion products is simulated by thermal 
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analogy. It is assumed that the three dimensional rust has a shape similar to a hollow elliptic 

cylinder. In the plane of steel cross section, the rust have a half elliptical shape on the side 

facing concrete cover and a half circular shape on the other side. In the longitudinal direction, 

within the length of each pit, it is assumed that the distribution of rust is uniform instead of 

elliptical just for simplicity. It is assumed that there are four pits along the length of 

reinforcement and the pits are distributed evenly in the longitudinal direction. In order to 

achieve the half elliptical rust expansion on the side facing concrete cover at the pit (θ from 0° 

to 180°), a different thermal coefficient is assigned to each direction of the FE element at the 

pit for θ from 0° to 90° (Figure 2-7). Each color in Figure 2-7 standards for a different value 

of thermal coefficient, α. α is increasing when θ changes from 0° to 90° and decreasing when 

θ changes from 90° to 180°. The value of the thermal coefficient in each direction is calculated 

based on Equation 2-1. For θ ranges from 180° to 360°, the rust distribution at the pit follows 

a circular shape. Thus a constant thermal coefficient is used for θ from 180° to 360°. For the 

rest of the steel where there is no pit, a zero value of the thermal coefficient is used. The results 

will be shown in Section 2.8. 

2.6 Parametric study 

One of the main goals of the study is to recommend geometrical and material characteristics 

that increase the time to crack initiation as well as crack propagation to concrete surface. For 

this purpose, a series of parameters have been studied. For parameter such as rust type, ITZ 

thickness and corrosion rate, analytical models are used to conduct the parametric studies due 

to the limitation of the macro-scale numerical models. For parameter such as cover depth, rebar 

diameter and concrete properties, FE modeling are used to conduct the parametric studies. 
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 Type of corrosion products 

A mixture of different oxides or hydroxides is produced during corrosion process (Table 2-3). 

The composition of corrosion products varies depending on the environment. Corrosion 

products accumulated at the interface between concrete and steel normally appear uniform, but 

sometimes a layered structure of light and darker bands can be observed. These layers may 

result from different levels of oxidation depending on the availability of oxygen (Wong et al. 

2010). Bazant (1979) considered only the contribution of Fe(OH)3 to the volume expansion 

(γ=0.523), while Liu and Weyers (1998) assumed a combination of Fe(OH)3 and Fe(OH)2 (γ 

varies from 0.523 to 0.622), with an average value of 0.57, and EI Maaddawy and Soudki 

(2007) considered Fe(OH)2 as the only corrosion product (γ=0.622). Some investigations (Vu 

et al. 2005, Marcotte and Hansson 2007) showed that the equivalent volumetric ratio λ was 

typically between 2 and 3. Some researchers (Yokozeki et al. 1997, Chernin et al. 2010) 

estimated the ratio λ was around 3.0. As the value 3.0 is close to the volumetric ratio of Geothite 

(α-FeOOH), Lu et al. (2011) concluded that Geothite was the main component in the corrosion 

products. The most recent study by Moreno et al. 2015 confirmed the presence of goethite (α-

FeOOH), akaganeite (β-FeOOH) and lepidocrocite (γ-FeOOH) by investigating an actual 

structure in a marine environment that is exposed to long-term natural corrosion. Both goethite 

and lepidocrocite are found in highly corroded reigions. 

The expansive pressure is expected to vary depending on the composition of the 

corrosion products. Therefore, the value of λ has a crucial effect on the accuracy of time to 

crack initiation model. Figure 2-8a shows the effect of the volumetric ratio λ on crack initiation 

time using different analytical models. It can be seen that the increase of λ will reduce the crack 

initiation time based on the model by Lu et al. (2011). This trend agrees with the regression 
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equations developed by Yokozeki et al. (1997) for calculating the critical time to concrete 

cracking. In the models developed by Liu and Weyer (1998) and EI Maaddawy and Soudki 

(2007), the crack initiation time also decreases with the increase in λ from 1 to 2, but when λ 

is in the range of 2-3, which is believed to be the realistic value for most situations, the models 

by Liu and Weyer (1998) and EI Maaddawy and Soudki (2007) result in an increase in crack 

initiation time as λ increases. The reason is that the crack initiation time in both of the models 

by Liu and Weyer (1998) and EI Maaddawy and Soudki (2007) is determined in terms of 

molecular weight ratio γ and change monotonically with γ, while the crack initiation time in 

the models by Yokozeki et al. (1997) and Lu et al. (2011) is determined in terms of volumetric 

ratio λ and change monotonically with λ. When λ is ranging from 4 to 6.15, all of the analytical 

models result in similar crack initiation time. 

 Thickness of interfacial transition zone 

Liu and Weyers (1998) included the penetration of chloride ions into ITZ in calculation of 

crack initiation time. It was hypothesized in this study that the corrosion products first filled 

up the porous area around the rebar and then the excess material started to exert pressure to the 

surrounding concrete. The same approach was adopted by EI Maaddawy and Soudki (2007). 

Liu and Weyers (1998) assumed the thickness of ITZ, δ, was equal to 12.5μm, while EI 

Maaddawy and Soudki (2007) believed that 10-20μm was the typically range of δ. Petre-Lazar 

and Gérard (2000) stated that δ varied from 2 to 8μm depending on the degree of hydration 

and water-to-cement ratio. A more recent study by Michel et al. (2011) reported that the value 

of δ was between 90 and 180μm under an accelerated corrosion condition with a very high 

current density of 250μA/cm2. In another study by Chernin et al. (2010), it was demonstrated 

that the estimated values of the ITZ thickness were larger than 20μm in many cases. They also 
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found that there was a strong linear relationship between the ITZ thickness and time to cover 

cracking, which indicates that corrosion products continuously penetrate into concrete pores 

and microcracks before concrete cover is fully cracked, not only until the ITZ is filled. In the 

TWDC model that they developed, an equivalent thickness is used to represent the amount of 

corrosion products that penetrate into concrete pores and cracks before full cover cracking. 

Although a common approach is to idealize the ITZ with a cylinder gap around the 

steel rebar, this method has been questioned recently. For instance, Jamali et al. (2013) 

mentions that there is no distinct border between the ITZ and steel or the surrounding concrete. 

This is due to the fact that the concrete is a porous material, so where to delineate the border 

between the ITZ and the concrete is difficult. Furthermore, the porosity around the steel bar 

may differ at different locations. For example, the concrete near the top side of the 

reinforcement is denser than that on the bottom side, and finally the rate of filling pores with 

rust material is highly dependent on the corrosion rate, transport phenomena and pore solution 

chemistry. 

It is understood that the thickness of ITZ is difficult to validly assess, but nevertheless 

the chosen value significantly influences the predicted value of time to cover cracking. The 

relationship between crack initiation time and ITZ thickness has been plotted in Figure 2-8b 

based on different analytical models. It is shown that the crack initiation time increases 

dramatically as the thickness of ITZ increases, particularly when using the model developed 

by Liu and Weyers (1998). 

 Corrosion rate 

Many factors that can influence corrosion rate, icorr, such as temperature, moisture, availability 

of oxygen, alkalinity of pore water, electrical resistivity of concrete and composition of steel 
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(Jamali et al. 2013). Most of these factors vary significantly depending on environmental 

conditions. It has been reported that the crack initiation time is inversely proportional to the 

corrosion rate. This is due to the fact that the corrosion process may slow down over the time 

as the surface of the remaining steel is no more accessible for electrochemical reaction due to 

the formation of corrosion product layers around the steel. 

In the studies related to corrosion-induced cracking, mostly accelerated conditions are 

implemented. The current density of accelerated corrosion tests is typically 100μA/cm2 or 

above, which is much higher than the rate of natural corrosion. Figures 2-8c and d show the 

effect of corrosion rate, icorr, on the crack initiation time using three different analytical models. 

It can be seen that all the models result in similar crack initiation time. Figure 8c shows the 

effect of icorr on crack initiation time for a corrosion rate up to 100μA/cm2, which is a typical 

value for accelerated corrosion. Figure 2-8d shows the effect of icorr on crack initiation time on 

a smaller scale, with a corrosion rate from 1 to 10μA/cm2, which is the normal range of 

corrosion rate for natural corrosion. Although the high corrosion rate may affect the accuracy 

of the prediction models, all models agree on the point that the crack initiation time decreases 

dramatically with the increase in corrosion rate. 

 Cover depth 

Concrete cover depth is a geometrical property that strongly affects the crack initiation time, 

thus is included as a parameter in most of the empirical or analytical models. As the cover 

depth increases, the crack initiation time increases (Lu et al. 2011). Figure 2-9a presents the 

crack initiation time with respect to concrete cover depth for the concrete specimen with 

multiple bars introduced in Section 2.5 (Figure 2-5a). These results are obtained from FE 

analysis and are in good agreement with previous observations on the effect of concrete cover, 
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which is due to the increase in critical pressure required to crack concrete and in the amount 

of corrosion products diffusing into concrete voids. Furthermore, the increase of the concrete 

cover increases the time for chloride to reach the surface of the steel and decreases the oxygen 

in the corrosion process which decreases corrosion rate. Therefore, increasing the cover depth 

can effectively increase the crack initiation time, consequently, is a direct approach to enhance 

the structural durability. 

 Diameter of reinforcement 

The diameter of the steel bar, d, has an influence on the total amount of corrosion products and 

thus the crack formation process. In addition, it affects the thickness of the ITZ, which is one 

of the parameters in the predictive model. The larger value of the diameter d, the larger volume 

of the ITZ it implies. Most of the experimental tests shows that the crack initiation time 

decreases with the increase of the rebar diameter (Mullard and Stewart 2011, Al-Harthy et al. 

2011). Empirical models such as Rodriguez et al. (1996), Alonso et al. (1998) show a similar 

trend, although a few models shows the opposite (Morinaga 1988, Liu and Weyers 1998).  

The ratio of cover depth to rebar diameter, c/d, can also be used to jointly examine the 

effect of cover thickness, c, and rebar diameter, d, on crack initiation time. Figure 2-9b shows 

the effect of c/d on crack initiation time based on the FE analysis for the concrete specimen 

with multiple bars (Figure 2-5a). The range of the c/d ratio satisfies the ACI code (80). It can 

be seen that the crack initiation time increases as c/d increases. It is clear that for the RC 

members with the same cover thickness, choosing a smaller rebar will result in longer crack 

initiation time. 

The distance between the rebars, s, can also affect the crack initiation time (Bazant 

1979). The pattern of crack propagation and cover spalling depends on the arrangement of 
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rebars in the concrete member. Most of the analytical models in the literature do not include 

this parameter, except for the model developed by Bazant (1979). The ratio of rebar spacing to 

diameter, s/d, can be used to assess the effect of rebar spacing, s, and rebar diameter, d, on 

crack initiation time. Figure 2-9c is plotted based on the FE analysis. The range of the s/d ratio 

satisfies the ACI code (2011).  It can be seen that the crack initiation time increases with the 

increase in s/d. For the concrete members with the same rebar diameter, increasing the distance 

between the reinforcement will result in the increase in crack initiation time. 

 Properties of concrete – Tensile strength, elastic modulus and creep 

Effects of concrete tensile strength on crack initiation time has been studied by many 

researchers, however, there is not an agreement to be achieved. Some experiments show that 

crack initiation time decreases with the increase of concrete strength, i.e. concrete quality 

(Rodriguez et al. 1996, Alonso et al. 1998, Vu et al. 2005, Al-Harthy et al. 2011). A recent 

experimental test by Mullard and Stewart (2011) found that crack propagation rate increases 

with a higher concrete strength. When the compressive strength of concrete increases by 70%, 

the crack propagation rate increases by 50%. The observation that cracking occurs slowly in 

low quality concrete (i.e. with lower strength) is most likely due to the high porosity in low 

strength concrete. The high porosity will allow a longer time for corrosion products to penetrate 

into concrete pores and voids before causing any pressure on the surrounding concrete and thus 

delaying crack initiation time. Although after these pores are filled, cracking would occur faster 

due to the weaker microstructure of low quality concrete, the time that it takes to fill out the 

ITZ compensate for the faster crack formation. However, corrosion initiation time is likely to 

reduce with the use of low quality concrete due to its high porosity making chloride more easily 

ingress into the concrete. When considering the whole deterioration process, corrosion 
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initiation time is more dominant, since it is normally the longest among three stages of 

deterioration process. 

A group of other experimental tests shows that concrete quality has no effect on crack 

initiation (Williamson and Clark 2000, Torres-Acosta and Sagues 2004). Some other research 

shows crack initiation time increases slightly with the increase of concrete strength (Yokozeki 

et al. 1997, Zhou et al. 2005). Most of the analytical and numerical models suggest that an 

increase of tensile strength leads to an increase in crack initiation time (Bazant 1979, Liu and 

Weyers 1998, El Maaddawy and Soudki 2007, Lu et al. 2011), if keeping other variables 

constant.  

According to the analytical models proposed by Liu and Weyers (1998), El Maaddawy 

and Soudki (2007) and Lu et al. (2011), the crack initiation time increases with the increase of 

ft /Eeff=(1+φcr) ft /Ec (ft  is the tensile strength of concrete and Eeff is the effective elastic modulus 

of concrete, calculated by the elastic modulus of concrete, Ec, divided by one plus the creep 

coefficient, φcr). Since enhancing concrete tensile strength, ft, will simultaneously increase the 

elastic modulus Ec, instead of considering ft alone, the ratio of f’t /Eeff should be taken into 

account. Tensile strength of concrete is often estimated from compressive strength of concrete, 

f’c. According to ACI, the average splitting tensile strength of concrete is approximately equal 

to 6.7ඥ ݂
ᇱ  (psi) which is 0.56ඥ ݂

ᇱ (MPa) for nornalweight concrete. Modulus of elasticity, Ec, 

is taken as 57000ඥ ݂
ᇱ (psi) which is 4733ඥ ݂

ᇱ (MPa) for normalweight concrete. It can be seen 

that both ft and Ec are expressed as a function of ඥ ݂
ᇱ. The effect of concrete tensile strength 

will cancel out in the analytical models by Liu and Weyers (1998), El Maaddawy and Soudki 

(2007) or Lu et al. (2011), if ACI equations are applied. Since different design codes may have 

different recommended values for ft and Ec, the calculation may result in inconsistent results. 
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For example, the effect of tensile strength will also cancel out when CSA (1994) equations 

(ft=0.94ඥ ݂
ᇱ (MPa), Ec= 4500ඥ ݂

ᇱ (MPa)) are adopted. But if Eurocode 2 (2004) equations are 

applied, the ratio of f’t /Eeff is increasing as concrete strength increases, which results in the 

increase in crack initiation time. Therefore, it can be concluded that in the above analytical 

models, the effect of concrete tensile strength on crack initiation depends on how the concrete 

tensile strength and elastic modulus are estimated prior to the calculation of crack initiation 

time. 

It is noted that the value of creep coefficient significantly affects the crack initiation 

time in most of the analytical models and the crack initiation time increases linearly with the 

creep coefficient φcr. Creep is mainly influenced by loading time and rate, concrete 

compressive strength, concrete age, cement and aggregate type, as well as ambient relative 

humidity. It increases gradually with time after two to five years until it reaches its final value, 

depending on concrete strength and other factors. Thus, for the same concrete, neglecting the 

effect of change in creep coefficient can be small if corrosion cracks occur in a couple of years 

after the structure is built. For concrete with different strengths, high strength concrete shows 

less creep than low strength concrete (Nilson et al. 2004). The creep coefficient for concrete 

with strength of 21MPa is 3.1, compared to the creep coefficient of 2.0 for concrete with 

strength of 55MPa. However, most of the studies comment on analytical models assuming a 

constant creep coefficient for different compressive strengths, which may lead to inconsistent 

results for the effect of tensile strength on crack initiation. In addition, whether corrosion 

affects concrete creep has not yet been researched. 

Figure 2-9d shows the effect of concrete tensile strength on crack initiation time from 

the FE analysis for the concrete specimen with multiple bars. The crack initiation time 
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increases slowly with the tensile strength, which would generally agree with those analytical 

models. This is due to the fact that the ft /Eeff ratio of concrete is defined to increases with the 

concrete strength. 

 Corrosion mechanism 

Reinforcing steel embedded in concrete is normally subjected to two different types of 

corrosion mechanisms: uniform corrosion and pitting corrosion. Uniform corrosion is 

commonly inherent to carbonation-induced corrosion. For chloride-induced corrosion in 

natural environment, pitting pattern is usually the dominant mechanism. In this case, corrosion 

products tend to accumulate at the steel-concrete interface facing the concrete surface (Cao 

and Cheung 2014), due to the fact that the chloride ions diffuse into the concrete medium 

through the surface of the member and reach the face of the steel closer to the surface first. All 

the studies through experimental, analytical or numerical approaches agree that the crack 

pattern of non-uniform corrosion is different from that of uniform corrosion. Compared to 

uniform corrosion, non-uniform corrosion causes higher concentrated pressure on the side 

facing concrete cover and leads to earlier cover cracking. The assumption of uniform corrosion 

may result in unconservative estimation for the service life of structures.  Parametric study 

indicates that cover cracking time for non-uniform corrosion decreases with the bar diameter 

and increases with the cover thickness and concrete strength (Jang and Oh 2010, Du et al. 

2014). The crack initiation occurs earlier for the bars located on the corners compared to those 

on the sides as the intrusion of chloride could happen from two directions in the former case.  

Research has shown that the corrosion mechanism changes as chloride-induced 

corrosion proceeds. According to the experimental results under natural corrosion environment 

from Zhang et al. (2010), pitting corrosion is the dominant corrosion mechanism at crack 
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initiation and the beginning of crack propagation. General corrosion progresses very slowly at 

this stage and cracks are always short and narrow. At the later stage of crack propagation, 

general corrosion develops rapidly and gradually becomes the dominant mechanism, although 

some deeper pitting still exists. At this stage, the longitudinal cracks interconnect and grow 

wider. 

2.7 Parametric study for crack propagation 

The FE models developed in Section 2.5 (Figure 2-5a) are used to conduct a sensitivity analysis 

on the effect of different parameters on the crack propagation pattern throughout concrete 

cover. Figures 2-10(a) - (e) shows the effect of variation in concrete cover depth on the crack 

pattern through the concrete cover. Each row presents a specific cover depth (20, 30, 40, 50 

and 60mm) and since the rebar diameter has been kept similar for all cases, each row represents 

the c/d of 1.250, 1.875, 2.500, 3.125 and 3.750, respectively. As mentioned earlier, the rust 

expansion is applied through the application of temperature increase to the steel rebar. The 

change in temperature has been applied equally to all the rebars. The results are shown at 81 

(Column 1), 96 (Column 2) and 131 (Column 3) hours, respectively. 

It can be seen from the figures that the cracks propagate in the concrete cover along 

two side bars, but not fully propagate along the middle bar. This can be explained by the 

mechanism that the internal radial stress caused by rust expansion acts on the concrete around 

the three bars. Two of the three bars are at free ends, which means there is no external force to 

counteract the expansive force. Therefore, it is easier for corrosion cracks to propagate along 

two side bars. Conversely, for the middle bar, the expansive stresses of two side bars act on 

the concrete surrounding the middle bar as compressive stresses, thus the tensile stress in 
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concrete around the middle bar reduces. As a result, it is more difficult for corrosion cracks to 

occur along the middle bar. 

It can also be seen that the cracks become more severe when the concrete cover 

decreases, as stated in Section 2.6.4. Moreover, it is noted that the crack propagation patterns 

vary with different cover depths. For the cover depth of 20mm, the cracks appear initially in 

the vertical direction below the two side bars (see Figure 2-10a1), followed by the formation 

of horizontal cracks between the bars (Figure 2-10a2). The spalling of concrete cover then 

occurs due to the severe vertical cracks below two side bars. And the diagonal cracks along 

two side bars also propagate towards the side surfaces of concrete (see Figure 2-10a3). For the 

cover depth of 30mm, cracks occur initially in the horizontal direction between the bars (Figure 

2-10b1), followed by the slight inclined cracks below two side bars propagating through the 

bottom concrete cover (Figures 2-10b2 and 2-10b3). Two major diagonal cracks (45 and 135 

degrees to the y axis, respectively) along each side bar also develop and propagate towards the 

side surface (see Figure 2-10b3). When the cover depth increases to 40mm, the cracks initiate 

horizontally between the reinforcing bars (see Figure 2-10c1). Then, the two diagonal cracks 

along each side bar occur 45 and 135 degrees to the y axis, respectively (Figures 2-10c2 and 

2-9c3). It can be seen from Figure 2-10c3 that the bottom surface cracks are much less severe, 

compared to the one with 20mm cover depth, proving that increasing the cover depth can 

efficiently slow down the cracking of concrete cover. The most severe cracks in concrete with 

the cover depth of 40mm are the 135 degree diagonal cracks along the two side bars. With the 

further increase of cover depth to 50mm, the cracks first occur horizontally between the 

reinforcing bars (Figure 2-10d1), then occur diagonally (45 and 135 degrees to the y axis, 

respectively) along each side bar (Figure 2-10d2). It is shown in Figure 2-10d3 that the 135 
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degree diagonal cracks along the two side bars towards the bottom are more severe than the 45 

degree diagonal cracks along side bars towards the top. For the cover depth of 60mm at the 

bottom, the cracks also initiates horizontally between the bars (see Figure 2-10e1), followed 

by the two diagonal cracks (45 and 135 degrees to the y axis, respectively) along each side bar 

(see Figure 2-10e2). As shown in Figure 2-10e3, a horizontal crack along each side bar 

develops later propagating though the side covers of concrete. This is because the depth of the 

side concrete cover is 52mm, which is smaller than the depth of the bottom cover 60mm. 

Among all the above FE results, it can be seen that the horizontal cracks between bars occurs 

first, except for the one with 20mm cover depth. This is due to the fact that half of the clear 

spacing between bars for all cases is 22mm, which is smaller than the cover depths of 30-

60mm. The crack occurs between bars first for cases with 30-60mm covers. For the one with 

the cover of 20mm, since the cover depth is smaller than half of the clear spacing, the crack 

first occurs vertically in the cover instead of propagating horizontally between the bars. It 

should be noted that although increasing cover depth can effectively slow down crack 

propagation process in concrete cover, there should be an optimum cover depth for a structural 

member, such as for a column, since a high cover depth will result in a weaker core eventually. 

Figure 2-11 shows the crack patterns for different cover depth to bar diameter ratios 

c/d, for the same time period of 131 hours. It is shown that with the decease of c/d ratio, the 

cracks become more severe, proving that the increase of c/d ratio can delay the cracking of 

concrete cover, as stated in Section 2.6.5.When c/d is 3.5 (d=10mm), as shown in Figure 2-

11a, the cracks are mild. The major cracks are the horizontal cracks between bars and the 

diagonal cracks along two side bars (45 and 135 degrees to the y axis, respectively). When c/d 

is 2.8 (d=12mm) (Figure 2-11b), the 135 degree diagonal cracks tend to become vertical cracks 
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below the two side bars and the horizontal cracks between bars becomes moderate. When c/d 

reduces to 2.0 (d=16mm), the cracks between bars in the horizontal direction tend to be more 

severe, so do the vertical cracks below the side bars (Figure 2-11c). As c/d further decreases 

to 1.2 (d=24mm), it is obvious that the crack pattern includes the severe horizontal cracks 

between bars, the two severe vertical cracks below side bars and the 45 degree diagonal cracks 

along side bars (Figure 2-11d). With the c/d of 0.8 (d=30mm), the horizontal cracks between 

bars become more severe. The vertical cracks below side bars become more severe as well, 

resulting in the spalling of concrete cover (Figure 2-11e). 

In order to quantify the severity of damage that concrete cracks cause on the corroded 

structures, the number of cracked elements on the bottom or side surfaces of the FE models 

are recorded, as well as the total number of cracked elements in the entire concrete block. In 

the concrete damaged plasticity model, isotropic damage elasticity combined with isotropic 

tensile plasticity is utilized to represent the inelastic behavior of concrete in tension. The tensile 

damage (dt) accounts for the degradation of the elastic stiffness induced by plastic straining in 

tension. A higher tensile damage corresponds to a lower tensile stress. If concrete is still in the 

elastic range, the tensile damage is equal to zero. Based on the stress-strain relationship of 

concrete in tension shown in Figure 2-12a, the tensile stress of concrete can be divided into 

three stages: 54-100%, 9-54%, 0-9% of tensile strength, corresponding to three stages of tensile 

damage, dt, in concrete: moderate (0<dt<0.7), severe (0.7 dt 0.95) and most severe 

(0.95<dt<1) damage (Figure 2-12b). A cracked element in the following discussion refers to 

an element of which both the maximum principle plastic strain and the tensile equivalent 

plastic strain (ABAQUS 2012) are greater than zero, which equivalently means dt >0. The 

percentages of total number of cracked concrete elements in the entire concrete model with a 
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cover depth of 20mm, 30mm, 40mm, 50mm and 60mm, are 33.8%, 32.9%, 32.0%, 30.2% and 

27.4%, respectively (Figures 2-10a3-e3). The rebar diameter (16mm) and the time period 

(131h) are kept the same for all cases. The drop of the cracked element percentage with the 

increase of cover depth indicates that cracks are more severe in a structure with a smaller cover 

depth and propagate more slowly in a structure with larger concrete cover depth. 

Figure 2-13a shows the percentages of the numbers of cracked elements that fall within 

the three stages of tensile damage to the number of total cracked elements for a cover depth of 

20-60mm, demonstrating that the extent of damage severity varies with the depth of concrete 

cover. With the cover depth of 20mm, the number of cracked elements with most severe 

damage takes up 43.2% of the total cracked elements. As the cover depth is increasing, this 

percentage is decreasing. With the cover depth of 60mm, the percentage of most severely 

damaged elements reduces to 27.2%. The elements with moderate damage and severe damage 

for the model with the 20mm concrete cover are 40.4% and 16.4%, respectively. These 

numbers increase to 43.8% and 29.1% for the one with the 60mm cover depth. For those with 

a cover depth of 30-50mm, although the numbers of elements with moderate and severe 

damage do not change linearly with the cover depth, the sum of the two increases as cover 

depth increases. The severity of tensile damage, i.e., the magnitude of dt, shows the stress status 

of the concrete, thus indicates the severity of cracks. An element with the most severe damage 

(dt >0.95), only retains less than 9% of original tensile strength, ft, which can be neglected. 

This suggests the element experiences the most severe crack. When the cover depth decreases 

from 60mm to 20mm, the percentage of elements with dt >0.95 in cracked elements rises from 

27.2% to 43.2%. This clearly shows the structure with a smaller cover depth experiences more 

severe cracks. 
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The numbers of cracked elements at both bottom and side surfaces for different cover 

depths, and the time when cracking reaches those surfaces are also recorded for the cases 

shown in Figures 2-10a3-e3. It can be known from the FE analysis, with the cover depth of 20, 

30 and 40mm, a crack occurs below each of the two side reinforcements on the bottom surface. 

There is no crack at both side surfaces. With the cover depth of 50mm, cracks occur at both 

bottom and side surfaces. And with the cover depth of 60mm, cracks only occur horizontally 

at side surfaces. For the models with cover depths of 20-50mm, the same mesh size and element 

number (360 elements in total) are used at the bottom surface. There are 53, 32, 26 and 18 

cracked elements at the bottom surface, respectively, with the cover depth of 20, 30, 40 and 

50mm. With the cover depth of 50 and 60mm, 20 and 10 elements crack at each side surface, 

respectively. The thicker concrete cover is, the less cracked elements are at the surface, which 

indicates cracks are more severe in the model with a thinner cover. For the case with 60mm 

cover depth, instead of bottom cracks, a horizontal crack at each side bar propagates toward 

the side cover. This is because the side cover (52mm) is thinner than the bottom cover (60mm). 

The time when cracking reaches bottom surfaces is 76, 83, 90 and 97 hours, respectively, for 

the cover depth of 20, 30, 40 and 50mm. This linear increase shows increasing cover depth 

delays concrete cover cracking. 

For the cases with different rebar diameters (Figure 2-11), the numbers of cracked 

concrete elements in the entire concrete block, as well as at bottom or side surfaces are recorded. 

The number of total cracked concrete elements in entire concrete model takes up to 28.0%, 

29.4%, 32.6%, 36.3% and 39.0%, respectively, for the model with a rebar diameter of 10mm, 

12mm, 16mm, 24mm and 30mm at the same time period (131h). The percentage of cracked 

elements increases as the rebar diameter increases, showing that a structure with larger 
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diameters of reinforcement experiences more severe cracks. Figure 2-13b shows the variation 

of dt in cracked elements in each of the three ranges with different rebar diameters. It can be 

seen that the percentage of elements with the most severe damage in cracked elements rises 

from 19.7% to 47.6% when the rebar diameter increases from 10mm to 30mm. The percentage 

of elements with moderate damage in cracked elements drops from 59.2% to 32.8% and the 

percentage of elements with severe damage does not vary significantly when the rebar diameter 

changes from 10mm to 30mm. This also proves that the severity of cracks increases with the 

increase of rebar diameter. 

To investigate the effect of concrete tensile strength, ft, on crack initiation and 

propagation, same model as shown in Figure 5a but with different concrete tensile strengths of 

1.92MPa, 2.5MPa, 3MPa, 3.5MPa and 4MPa are studied. The total number of cracked 

elements, as well as the number of cracked elements at the bottom or side surfaces is recorded 

from the FE analysis. The total number of cracked elements in the entire concrete block at the 

same time period (131h) with the five different tensile strengths are 32.6%, 29.1%, 27.4%, 

24.1% and 23.1%, respectively. The percentage of crack elements reduces with tensile strength 

of concrete, indicating that crack propagates slower in high quality concrete. This is due to the 

reason that the ft /Eeff ratio of concrete is defined to increases with the concrete strength in the 

FE simulations. The result is consistent with the results from analytical models which define 

the concrete in a similar way. Figure 2-13c shows the percentage change of dt in cracked 

elements in each range with different tensile strengths. It can be shown that the percentage of 

elements with the most severe damage in total cracked elements increases from 32.0% to 44.8% 

when tensile strength increases from 1.92MPa to 4MPa. The percentage of elements with 

moderate damage reduces from 46.5% to 32.5% and the percentage of elements with severe 
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damage does not change significantly. Although with a higher tensile strength, the total number 

of cracked elements is smaller, the percentage of most severely damaged elements to the total 

cracked elements is higher, showing that crack propagates slowly with high tensile strength, 

but once the element cracks, the cracks are more severe. This is because concrete with a higher 

tensile strength is more brittle compared to the one with a lower tensile strength. 

2.8 Crack patterns of non-uniform corrosion 

To study the effect of non-uniform corrosion on the cracking of concrete cover, 3D FE models 

has been developed and described in the end of Section 2.5. The shape of the rust is assumed 

to be a hollow elliptic cylinder. There are four pits facing concrete cover distributed evenly 

along the length of the reinforcement. The extent of non-uniformness of rust expansion at the 

pit is determined by Δrmax/Δrmin, the ratio of the maximum to minimum radius increase 

(Equation 1). Figure 2-14 shows the crack patterns for non-uniform corrosion at the pit with 

the ratio of Δrmax/Δrmin equal to 4, comparing to the crack patterns for uniform corrosion. Since 

thermal analogy is used to model rust expansion, the extent of radial expansion (i.e. diameter 

increase) caused by the increasing amount of corrosion products can be represented by the 

increase of temperature (Equation 3). The crack patterns under three different temperature 

increase (ΔT): 59K, 119K and 300K, are shown in Figure 2-14 to show the progress of crack 

propagation as rust is expanding. It can be seen that the crack pattern of the non-uniform 

corrosion is different from that of the uniform corrosion. Under uniform corrosion, the major 

crack occurs vertically in the cover. The secondary cracks that occurs later are in the direction 

of 135 and -135 degrees with respect to the vertical axis (Figures 2-14b, d and f). This pattern 

was also observed in Section 2.5 (Figure 2-4b). However, under non-uniform corrosion, the 

major cracks firstly form at 45 and -45 degrees with respect to the vertical axis at the location 
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of the pit (Figure 2-14a). The vertical crack appears later and then becomes a major crack after 

the two diagonal cracks (Figure 2-14c). The two cracks in the direction of 135 and -135 degrees 

are minor cracks compared to the three major cracks (Figure 2-14e). The FE results show that 

when considering non-uniform corrosion in three dimensions, the crack on the top surface is a 

longitudinal crack along the length of reinforcement, which is similar to the case of uniform 

corrosion. However, the cracks are more severe at the location of the four pits. The percentage 

of the crack elements to the total elements on the top surface is 9.2% for non-uniform corrosion, 

compared to 8.7% for uniform corrosion (Figures 2-14e and f). 

The FE results for non-uniform corrosion with different extents of non-uniformness 

(the ratio of Δrmax/Δrmin equal to 4, 8 and 32) are presented in Figures 2-15 and 2-16. Figure 2-

15 shows the crack patterns under non-uniform corrosion at the pit which is 233mm away from 

the end with comparison to that under uniform corrosion. Figure 2-16 shows the crack patterns 

under non-uniform corrosion at the end which is not at the location of pits. Comparing Figures 

2-15 and 2-16, it can be known that the crack patterns of non-uniform corrosion at the pits and 

away from the pits are very different. There are three major cracks in the cover at the pits. 

However, at the locations which are far away from the pits, the cracks are much less severe 

(Figure 2-16). There is only one major vertical crack with Δrmax/Δrmin=32. When Δrmax/Δrmin=4 

and 8, only the elements in a thin layer of mesh around the steel on the side facing the cover 

show a sign of cracking. Comparing the crack patterns of non-uniform corrosion under the 

same temperature increase with different Δrmax/Δrmin ratios in Figure 2-15, it can be seen that 

the crack pattern does not change obviously with the Δrmax/Δrmin ratio. But the cracks become 

much more severe with a higher Δrmax/Δrmin ratio. Moreover, the crack initiation time is 

significantly reduced when Δrmax/Δrmin is greater. The crack initiates at a temperature increase 
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of 43.8K for the case with Δrmax/Δrmin=4, and initiates at a temperature increase of 23.9K when 

Δrmax/Δrmin=8. Thus the crack initiates 46% earlier when the Δrmax/Δrmin ratio is doubled. With 

a Δrmax/Δrmin ratio of 32, the crack initiates at a temperature increase of 6.0K, which is 75% 

earlier than the case with Δrmax/Δrmin=8. At crack initiation, the amount of steel mass loss, i.e. 

the corrosion level is decreasing when Δrmax/Δrmin is higher. The percentage of steel loss 

required to cause cracking is 0.34%, 0.33% and 0.31% for Δrmax/Δrmin=4, 8, and 32, 

respectively. This indicates that the more concentrated non-uniform corrosion is, the earlier 

the cracking starts and the more dangerous the corrosion is. It should be noted that the crack 

initiates at a temperature increase of 41.1K for uniform corrosion, which means the concrete 

cracks a little earlier than the non-uniform case with Δrmax/Δrmin=4 (43.8K) but much later than 

the case with Δrmax/Δrmin=8 (23.9K). This is because the non-uinform corrosion is considered 

in three dimensions and it is assumed that there are only four pits in the longitudinal direction. 

The crack initiation time depends on the amount and spatial distribution of the pits. Therefore, 

studying non-uniform corrosion in two dimensions may not give an accurate prediction for 

crack initiation of concrete cover. 

2.9 Conclusions 

This study provides a critical and comprehensive analysis for the analytical and numerical 

models of corrosion-induced crack initiation of concrete cover for both uniform and non-

uniform corrosion. The previous research conducted in the literature has been summarized. 

After carefully examining the accuracy and applicability of the existing models, 

recommendations have been made on how to select the proper models to estimate crack 

initiation time. 
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Parametric studies have been conducted to investigate the effect of influencing 

parameters on crack initiation time. It can be concluded that the influencing parameters that 

affect crack initiation time the most significantly from high to low are the rate of corrosion, 

thickness of interfacial transition zone and type of corrosion products. The results show that 

crack initiation time decrease with the corrosion rate but increases with the thickness of ITZ. 

Recent studies found that goethite, akaganeite and lepidocrocite were the main component of 

corrosion products. The results of parametric studies also show that concrete cover depth and 

rebar diameter affects crack initiation time as well. Crack initiation time increases with the c/d 

and s/d ratios. The FE results show that crack initiation time increases almost linearly with 

concrete cover depth. Increasing the cover depth is an effective approach to enhance the 

structural durability. Properties of concrete, such as tensile strength, elastic modulus and creep, 

as well as corrosion morphology also affect crack initiation time.  

Three dimensional nonlinear finite element models have been developed to study crack 

initiation time and its influencing parameters as well as crack propagation patterns. The FE 

models have been validated against experimental test data. Thermal analogy has been selected 

to simulate the rust expansion caused by corrosion. The proposed models are able to quantify 

the extent of damage due to concrete cracks by using the damage plasticity model. The damage 

extent caused by cracking have been quantified and categorized under different case scenarios, 

such as cover depths from 20 to 60mm, rebar diameters from 10 to 30mm and concrete tensile 

strength from 1.92 to 4MPa. The percentages of cracked concrete elements with a cover depth 

of 20mm, 30mm, 40mm, 50mm and 60mm, are 33.8%, 32.9%, 32.0%, 30.2% and 27.4%, 

respectively, with the same time and rebar diameter.  
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Cover crack initiation and crack patterns under uniform and non-uniform corrosion are 

studied through developing FE models for the two types of corrosion respectively. Parametric 

studies have been conducted for crack propagation patterns under uniform corrosion. In the 

case of non-uniform corrosion, a new approach that includes multiple 3D pits distributed along 

the length of the steel reinforcement have been developed. The rust is assumed to be a hollow 

elliptic cylinder with a half elliptical shape on the side facing concrete cover and a half circular 

shape on the other side. Different thermal coefficients are assigned to each direction facing 

concrete cover at the pit. The results show the comparison of crack patterns under uniform and 

non-uniform corrosion. Under uniform corrosion, the major crack occurs vertically in the cover. 

But under non-uniform corrosion, the major cracks form at 45 and -45 degrees with respect to 

the vertical axis at the location of the pit. The vertical crack appears later and then becomes 

the third major crack. 

 Under non-uniform corrosion, the results also include the difference of crack patterns 

with different extents of non-uniformness (the ratio of Δrmax/Δrmin equal to 4, 8 and 32). The 

results show that the crack pattern does not change very obviously with the Δrmax/Δrmin ratio. 

But the cracks become much more severe with a higher Δrmax/Δrmin ratio. Moreover, the crack 

initiation time is significantly reduced when Δrmax/Δrmin is greater. The amount of steel mass 

loss to cause crack initiation is decreased when Δrmax/Δrmin is higher. The highly non-inform 

corrosion could cause very earlier cover cracking and should be paid attention to. For non-

uniform corrosion, the results show the crack patterns both at the location of the pit and away 

from the pit. The patterns at the pits and away from the pits can be different. Under the studied 

case, three major cracks are observed at the pits in the cover, but only one major vertical crack 

or no major cracks (depends on the Δrmax/Δrmin ratio) are observed at the location that is far 
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away from the pits. It can be concluded that in the case of non-uniform corrosion, higher 

concentrated pressure is produced at the concrete-steel interface that faces the concrete cover 

at the pits thus would lead to earlier cracking of concrete cover. The assumption of uniform 

corrosion may result in unconservative estimation for the service life of RC structures 

particularly under chloride-induced corrosion in natural environment.  

The outcome of this research offers a reliable approach to predict corrosion-induced 

crack initiation and propagation in concrete cover for RC structures, thus will provide 

infrastructure owners as well as government agencies with more reliable predictions for the 

service life of RC structures in corrosive environment, as well as help inspectors and engineers 

optimize field test plans and rehabilitation strategies for RC structures. 
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 Table 2-1. Comparison of predicted and experimental results for time to cracking 

Reference test 
Observed 
time (h) 

icorr 

(μA/cm2) 

Liu and Weyers 
(1998) 

EI Maaddawy and 
Soudki (2005) 

Lu et al. (2011) 

Predicted 
time (h) 

Tmodel/
Ttest 

Predicted 
time (h) 

Tmodel/
Ttest 

Predicted 
time (h) 

Tmodel/
Ttest 

Andrade et al. (1993) 96 100 112.9 1.18 96.8 1.01 95.0 0.99 

Lu et al. (2011) 
147.5 100 253.2 1.72 145.8 0.99 161.4 1.09 

87 150 168.8 1.94 97.2 1.12 107.6 1.24 
112 100 188.8 1.69 125.9 1.12 138.8 1.24 

EI Maaddawy and 
Soudki (2005) 

95 150 109.9 1.16 78.0 0.82 77.0 0.81 

Liu and Weyers 
(1998) 

1.84yrs 2.35 0.84yrs 0.46 0.58yrs 0.32 1.33yrs 0.73 

3.54yrs 1.79 1.72yrs 0.49 0.95yrs 0.27 2.63yrs 0.74 

0.72yrs 3.75 0.29yrs 0.40 0.27yrs 0.38 0.47yrs 0.66 

Vu et al. (2005) 

134 100 112.2 0.84 96.5 0.72 98.2 0.73 
194.7 100 210.6 1.08 132.2 0.68 139.4 0.72 
116 100 105.3 0.91 93.5 0.81 96.6 0.83 

155.7 100 193.1 1.24 126.6 0.81 136.1 0.87 
136.1 100 101.5 0.75 91.8 0.67 95.7 0.70 
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Table 2-2. Summary of numerical models 

Reference 
Molina et al. 

(1993) 
Yokozeki et 

al. (1997) 
Zhou et al. 

(2005) 

Toongoenthong 
and Maekawa 

(2005) 

Chen and 
Mahadevan 

(2013) 

Val et al. 
(2009) 

Dimensionality 2D 2D 2D 2D 3D 2D 
No. of rebars Single Multiple Two Multiple Single Multiple 

Poisson’s ratio 
of rust 

νr=0.5 νr =0.3 
Rust not 

simulated 

Steel and rust as 
one expansive 

material 

Rust not 
simulated 

Rust not 
simulated 

Elastic modulus 
of rust 

Er=3(1-2νr)Kr, 
Kr=2GPa 

Er =250MPa 
Rust not 

simulated 

Steel and rust as 
one expansive 

material 

Rust not 
simulated 

Rust not 
simulated 

Concrete model 

Smeared fixed 
crack model 
with linear 
softening 

Smeared 
crack model, 

tension 
softening 
based on 

Model Code 
1990 

Damaged 
plasticity 

model 

Smeared crack 
model with 

nonlinear tension 
softening 

Smeared 
crack model 

Fixed 
orthogonal 

crack model 

Elements for 
concrete 

Eight node 
plane strain 

element 
- 

Eight node 
isoparametric 

element 

Plain strain 
element 

Solid65 – 
eight nodes 
with three 
DOFs at 

each node 

Four node 
bilinear plain 

strain 
quadrilateral 
element with 

reduced 
integration 

and hourglass 
control 

Rust modeling 
approach 

Thermal load - 
Radial 

displacement 

Steel and rust as 
one compatible 

growing material 

Radial 
displacement 

Thermal 
analogy 

Rust penetrating 
into concrete 

cracks 
No No No Yes No No 

Validation 

Quantitative 
comparison 

with 
experimental 

tests 

Quantitative 
comparison 

with 
experimental 
tests in the 
literature 

No Yes No 
Only 

qualitatively 
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Table 2-3. Properties of iron and major corrosion products                                                    

Corrosion products Composition 
Molecular weight 

ratio γ 
Volumetric 

ratio λ 
Iron Fe 1 1 
Geothite α-FeOOH 0.629 2.91 
Akaganeite β-FeOOH 0.629 3.48 
Lepidocrocite γ-FeOOH 0.629 3.03 
Iron oxide FeO 0.778 1.70 
Hematite 1/2Fe2O3 0.350 2.00 
Magnetite 1/3Fe3O4 0.241 2.10 
Ferrous hydroxide Fe(OH)2 0.622 3.60 
Ferric hydroxide Fe(OH)3 0.523 4.00 
Hydrated ferric oxide Fe(OH)3 ∙ 3H2O 0.348 6.15 
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(a)                                                            (b) 

Figure 2-1. The two analytical models of corrosion-induced cracking (a) TWUC; (b) TWDC 

 

 

Figure 2-2. Different stages of the corrosion process 

 

Figure 2-3. (a) Distribution of corrosion products in pitting conditions (Yuan and Ji 2009); 

(b) Developed elliptical model for rust distribution 
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          (a)                                                                       (b) 

Figure 2-4. (a) The FE model and (b) Crack patterns of the cross section in terms of maximal 

principle strains (contour and arrow view) 

 

                    
 
 
 
 
 
 
 
 
 

 
(a)                                                            (b)                                                (c) 

Figure 2-5. (a) The FE model; (b) Crack pattern of FE model; (c) Crack pattern of test 

specimen 
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Figure 2-6. Three dimensional non-uniform corrosion and rust expansion 

 

Figure 2-7. The distribution of radial thermal coefficients 
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(a)                                                                                     (b) 

 

 

 

 

 

 

 

(c)                                                                                     (d) 

Figure 2-8. Effect of influencing parameters on crack initiation time: (a) type of corrosion 

product; (b) thickness of ITZ; (c) corrosion rate up to 100μA/cm2; (d) long-term corrosion 
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(a)                                                                                      (b) 

 

 

 

 

 

 

 

 

(c)                                                                                      (d) 

Figure 2-9. Effect of influencing parameters on crack initiation time: (a) cover depth; (b) c/d; 

(c) s/d; (d) tensile strength of concrete 
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(a)  

 

   

               

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

(d) 

 

 

 

 

 

(e) 

 

    

                          

(1) t=81h (20%)                        (2) t=96h (45%)                              (3) t=131h 

Figure 2-10. Crack propagation patterns for different cover depths: (a) 20mm; (b) 30mm; (c) 

40mm; (d) 50mm; (e) 60mm at bottom (d=16mm, s=60mm, scl=22mm, ft=1.92MPa) 
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                                 (a) d=10mm, c/d=3.5                  (b) d=12mm, c/d=2.8 

 

                                

 

 

 

 

                                 (c) d=16mm, c/d=2.0                  (d) d=24mm, c/d=1.2 

 
(e) d=30mm, c/d=0.8 

Figure 2-11. Crack propagation patterns for different cover depth to bar diameter ratios 

(ft=1.92MPa, t=131h) 
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(a)                                                                               (b) 

Figure 2-12. (a) Stress-strain curve of concrete in tension; (b) Relationship between cracking 

strain and tensile damage in concrete 
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(a) 

 
(b) 

 
(c) 

Figure 2-13. Variation of tensile damage extent in cracked concrete elements with (a) 

different cover depths; (b) different rebar diameter; (c) different concrete tensile strength 
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                                 (a) Non-uniform corrosion, ΔT=59K            (b) Uniform corrosion, ΔT=59K                           

 

 

 

 

 

 

 

 

                                (c) Non-uniform corrosion, ΔT=119K          (d) Uniform corrosion, ΔT=119K                          

 

 

 

 

 

 

 

 

 

                                (e) Non-uniform corrosion, ΔT=300K          (f) Uniform corrosion, ΔT=300K 

Figure 2-14. Crack patterns for non-uniform and uniform corrosion                                      

(Non-uniform corrosion: Δrmax/Δrmin=4, at the pit which is 233mm from the end) 
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                                   (a) Δrmax/Δrmin=32                                            (b) Δrmax/Δrmin=8 

 

 

 

 

 

 

                                   (c) Δrmax/Δrmin=4                                              (d) Δrmax/Δrmin=1 (uniform) 

Figure 2-15. Crack patterns of non-uniform and uniform corrosion                                     

(Non-uniform corrosion: at the pit which is 233mm from the end) 

  



www.manaraa.com

74 
 

 

 

 

 

 

 

 

                                  (a) Δrmax/Δrmin=32                                                 (b) Δrmax/Δrmin=8         

 

 

 

 

 

 

 

                                   (c) Δrmax/Δrmin=4 

Figure 2-16. Crack patterns of non-uniform corrosion                                                        

(at the end, not at the location of pits) 
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CHAPTER 3. A DETAILED FINITE ELEMENT APPROACH FOR 

PERFORMANCE ASSESSMENT OF CORRODED REINFORCED 

CONCRETE BEAMS 

Modified from a paper published in the proceedings of The ASCE Structures Congress 2014, 

Boston, Massachusetts. 

Zhen Cui, Alice Alipour 

3.1 Abstract 

Structural behavior of reinforced concrete beams with corroded reinforcement is studied in this 

paper. The degrading effects of corrosion on the structural response of reinforced concrete 

beams has been simulated considering factors such as the reduction of cross sectional area of 

steel, change in steel and concrete material properties and bond deterioration. A three 

dimensional finite element model, which is capable of considering the nonlinearity in material 

and geometric properties, is proposed to investigate the structural performance of reinforced 

concrete beams with different reinforcement ratios and arrangements under varying corrosion 

levels. Nonlinear relationship for the bond-slip deterioration as a function of corrosion level 

has been developed and implemented into the finite element model. At the final stage, the 

results have been verified with the available experimental data. 

3.2 Introduction 

Different mechanisms such as chloride intrusion, carbonation, or sulfate attack can result in 

corrosion initiation in steel reinforcement. In coastal regions or those areas with harsh winters 

and high exposure to deicing salts, the chloride induced corrosion is one of the major causes 

of deterioration of reinforced concrete structures. The deterioration mechanism can be divided 

into two major phases: a) corrosion initiation and b) corrosion propagation. At the corrosion 
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initiation level, the chloride ions diffuse into the concrete through the pores and micro cracks. 

As the chloride content in the vicinity of the rebars reaches a critical level, the protective film 

around the rebar is depassivated and the corrosion starts. During the corrosion process the cross 

sectional area of the steel is reduced to produce the corrosion products. Since the volume of 

rust produced in the corrosion process is larger than that of steel used in the process internal 

pressure is applied to the surrounding concrete which results in concrete cracking, spalling, 

and de-bonding (Val and Chernin 2009, Alipour et al. 2010, and Shafei and Alipour 2013). 

Extensive research has been conducted to estimate the corrosion initiation time (Shafei et al. 

2012 and 2013), and the concrete cracking due to corrosion (Pantazopoulou and Papoulia 2001, 

El Maadaway and Soudki 2007, Shafei and Alipour 2012, and Alipour et al. 2011 and 2013). 

However not many studies have included the effect of bond loss. According to EI Maaddawy 

et al. (2003), most of the research on the effect of corrosion on bond strength is based on 

experimental studies. The studies on the effect of corrosion on structural capacity of the beams 

(Rodriguez et al. 1996 and 1997) and bond behavior and strength (Al-Sulaimani et al. 1990, 

Cabrera and Ghoddoussi 1992, Clark and Saifullah 1993, Rodriguez et al. 1994, Almusallam 

et al. 1996, Berto et al. 2008, Al-Hammound et al. 2010) are good examples of the many 

experimental tests available in the field. This paper aims to provide a clear approach on finite 

element modeling of the response of corroded reinforce concrete beams, considering the 

change in: steel cross sectional area both in longitudinal and transverse reinforcement, yield 

strength of the steel material, mechanical properties of concrete in tension and compression, 

and bond. The results from the developed finite-element models will be validated with those 

from Rodriquez et al. (1996 and 1997) experimental tests. 



www.manaraa.com

77 
 

3.3 Corrosion effects on material behaviors 

3.3.1 Corrosion of reinforcing steel 

The effect of steel corrosion can be accounted for by reducing the cross sectional area of 

reinforcing bars, decreasing yield and ultimate strengths and enforcing a lower ultimate strain 

in constitutive model of steel. Corrosion can occur in two forms: general and pitting. The 

pitting corrosion starts by a localized dissolution of the metal surface due to attack by chloride 

ions. On the other hand the uniform dissolution of the passive steel surface results in general 

corrosion. The reduction of cross sectional area of the steel bar due to pitting corrosion can be 

expressed as the following (Berto et al. 2008): 

௦ܣ ൌ
గሺబିఒ௫ሻమ

ସ
                    (3-1) 

In general (uniform) corrosion, the procedure suggested by Alipour (2010) could be used: 

௦ܣ ൌ
ሺగబ

మିସೞೞሻ

ସ
                    (3-2) 

where Ar
s is the residual cross sectional area of a steel bar, Do is the initial diameter of a steel 

bar, x is corrosion depth in the bar (Val and Melchers 1997), λ takes into account the possibility 

of a one-side or two-side corrosion attack penetration, ΔVloss is the change in the volume of 

corroded steel per unit length. 

Apostolopoulos et al. (2013) conducted an experiment and proved that the yield 

strength and uniform elongation progressively impaired after corrosion initiation. In high 

levels of corrosion, the steel becomes very brittle which can result in sudden rupture of 

reinforcement and ultimately the structural failure. The residual strength of corroded 

reinforcement can be estimated using the following empirical formula (Du et al. 2005): 

௬݂
 ൌ ሺ1 െ 0.005݉௦௦ሻ ௬݂

                   (3-3) 
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where fy
r is the residual yield strength of corroded reinforcement, fy

0 is the yield strength of 

pristine reinforcement and ݉௦௦  is the percentage of steel mass loss, calculated from the 

consumed mass per unit length divided by the initial steel mass per unit length 

(mloss=Mloss/M0×100). 

Ductility reduction is generally associated with notch formation during the pitting 

corrosion (Berto et al. 2008) and can be taken into account by adopting a lower ultimate strain 

for steel. The ultimate strain of steel is linearly dependent on the reduction of steel cross 

sectional area. Coronelli and Gambarova (2004) suggested the following simplified equation: 

௦௨ᇱߝ ൌ ௦௬ߝ  ൫ߝ௦௨ െ ௦௬൯ߝ ൬1 െ
ఈ
ఈ
ೌೣ൰	                    (3-4) 

where αpit is the percent reduction of the bar cross section,	εsy is the steel yield strain, and ε’su,	

and	εsu are the ultimate strain of corroded steel and pristine steel, respectively. Equation 4-4 is 

only applicable for αpit< ߙ୮୧୲
୫ୟ୶. 

By defining the reduction percentage of the rebar cross sectional area αpit, the evolution 

of steel ultimate strain can be described. If the steel is not corroded Equation 3-4 will reduce 

to: ε’suൌεsu (i.e., αpit=0) in contrary ε’suൌ	εsy indicates a complete loss of ductility. 

3.3.2 Concrete degradation 

The expansion of rust layers around the steel rebar during corrosion process causes internal 

pressure to the surrounding concrete and eventually result in cracking and spalling of the cover. 

General corrosion is known to be the major cause of most of concrete cover spalling compared 

to the pitting corrosion (Berto et al. 2008). The corrosion effect on concrete can be considered 

by decreasing the thickness of concrete cover elements, decreasing the concrete compressive 

strength in the concrete cover and using a brittle post-peak behavior in the constitutive model 
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of concrete (Coronelli and Gambarova 2004). The reduced compressive strength of concrete 

can be calculated using the following equation: 

݂
 ൌ ᇲ

ଵାೃഄೌ
ഄ

                                                                                                                             (3-5) 

ߝ ൌ
భ
బ
െ 1                                                                                                                            (3-6) 

ܾଵ ൌ ܾ   (7-3)                                                                                                                        ݓ݊

where εc is the strain at the compressive strength f’c, εa is the average tensile strain in cracked 

concrete perpendicular to the direction of the applied compression, R is a coefficient related to 

the roughness and diameter of reinforcement. R = 0.1, recommended by Coronelli and 

Gambarova (2004), b0 is the original width of the cross section, b1 is the increased width due 

to corrosion cracks, n is the total number of the reinforcement in the top layer, and w is the 

total crack width, which can be calculated based on Molina et al. (1993). 

ݓ ൌ ∑ ݓ ൌ ߣሺݔߨ2 െ 1ሻ                                                                                                    (3-8) 

where wi is each single crack width, xb is the radius reduction of reinforcement, and λ is the 

volumetric ratio, which varies depending on the composition of corrosion products. The value 

of λ can be found in Section 2.5.1 of Chapter Two. 

3.4 Bond deterioration 

3.4.1 Bond models 

Bond is the mechanism through which forces are transferred between reinforcement and 

surrounding concrete in reinforced concrete structures. Bond in RC structures consists of three 

main mechanisms: chemical adhesion between steel and concrete, friction due to the roughness 

of the interface, mechanical interlock (bearing forces) between the ribs of deformed bars and 

surrounding concrete (ACI Committee 408 2003). When a deformed bar moves with respect 
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to surrounding concrete, chemical adhesion is lost, and bearing forces and frictional forces are 

mobilized. As slip increases, friction reduces. After initial slip of the bar, most of the forces 

are transferred by bearing. If concrete cover, bar spacing or stirrups is not sufficient, the system 

will fail by splitting failure. If concrete cover or bar spacing is sufficient, or there is enough 

transverse reinforcement provided to prevent splitting failure, the system will fail by pull-out 

failure. In the pull-out failure, the concrete between bar lugs shears off from surrounding 

concrete. If the anchorage to concrete is adequate, the system can fail due to yielding. 

According to ACI Committee 408 (2003), the bond strength is governed by 

 The mechanical properties of concrete (tensile and bearing strength), 

 The volume of concrete around the reinforcement, related to concrete cover and bar 

spacing, 

 The presence of confinement, in the form of transverse reinforcement, 

 The surface condition and geometry of reinforcement, such as deformation height, 

width, spacing and face angle. 

According to fib (2010), the bond stress-slip relation for ribbed bars in well-confined 

concrete is described as Figure 3-1 and Equation 3-9. 
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                                                  (3-9) 

where τb is bond stress, S is slip, τb,max is maximum bond stress, τf is the bond stress at the lower 

constant level (40% of τb,max), α and S1~S4 are the parameters of the model, see Table 3-1 (fib 

2000). 
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The bond-slip curve can be characterized by different stages. At the first stage, there is 

a nonlinear increase of bond stress up to the maximum bond strength, τb,max. This stage refers 

to the mechanism of local crushing and micro-cracking due to the penetration of steel rebar 

ribs into concrete. The slip during this stage is relatively small. The decreasing slope indicates 

the degradation of stiffness during this stage which is an indicator of the damage progress. 

Normally under confined conditions, the bond stress remains constant for a certain range of 

slip. This stage corresponds to the advanced and continued crushing and tearing off of the 

concrete. If there is a lack of confinement or progress in deterioration, this horizontal stage will 

become inclined with a negative slope representing a splitting failure rather than a pull-out 

failure. After that, the bond stress will decrease to a much smaller constant level, τf. This curve 

indicates a typical mechanism for pull-out failure if the steel rebar in concrete is well-confined. 

However, if the steel is under poor confinement condition or deterioration, instead of pull-out 

failure, splitting failure will occur (Figure 3-1-dashed line). 

3.4.2 Bond loss 

3.4.2.1 Experimental tests 

Al-Sulaimani et al. (1990) conducted a series of pull-out and beam tests to examine the bond 

behavior at different stages of reinforcement corrosion: non-corrosion, pre-cracking, cracking 

and post-cracking levels. They obtained the bond stress/load-slip relationship at different 

corrosion levels and showed that the bond strength increased with the increase of corrosion 

under low level of corrosion up to 0.5 to one percent, but decreased consistently with further 

increase of corrosion. The initial increase in bond strength was due to the increased roughness 

of steel-concrete interface caused by the growth of the expansive rust. With the opening of a 

longitudinal crack, a sharp jump will be noticed in the free slip. In their pull-out tests simulating 
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severe localized corrosion, the bond strength increased up to 1.7 times that of non-corroded 

specimens at 1 percent corrosion and declined almost linearly to a negligible level at 8.5, 7.5 

and 6.5 percent corrosion for 10, 14 and 20mm bars, with c/d ratios of 7.50, 5.36 and 3.75, 

respectively. In the beam tests, the decrease of bond strength after initial increase was very 

gradual. In the beam specimens with adequate development length of reinforcement and proper 

amount of shear stirrups ensuring that the flexural failure precedes bond and shear failure, the 

ultimate load was not affected by corrosion up to 1.5 percent and reduced by 12 percent for 4.5 

percent corrosion. This phenomenon is due to the cross sectional area reduction. It was reported 

that the bond behavior was greatly influenced by the concrete cover to bar diameter ratio, the 

surface condition of the bar, as well as the confinement of the bar.  

Cabrera and Ghoddoussi (1992) conducted a series of pull-out and beam tests to 

investigate the effect of reinforcement corrosion on bond strength, crack width and deflection. 

According to their pull-out tests, the bond strength increased with corrosion up to a maximum 

and then significantly decreased. For example, the residual bond strength of the specimens at 

12.6 percent corrosion was only 23.8 percent of the bond strength in pristine condition. In the 

beam tests, the variation of bond strength with corrosion has a similar trend. The critical bond 

stress of tested beams due to bond failure increased by 16-18 percent at about 0.5 percent 

corrosion. The residual bond strength of tested beams failed in flexure at 9.2 percent corrosion 

was around 80 percent of the original bond strength.  

Almusallam et al. (1996) conducted pull-out tests to examine the effect of 

reinforcement corrosion on bond strength, free end slip and failure mode in pre-cracking, 

cracking and post-cracking stages. The influence of crack width and rib profile degradation on 

bond strength was another factor considered. It was found that in the pre-cracking stage (0-4 
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percent corrosion), the bond strength increased by 17 percent with a decrease in the slip at 

bond strength. The first crack appeared at 5 percent of corrosion, and the bond strength 

decreased gradually at 5-6 percent corrosion. After that point, the bond strength dropped 

dramatically.  At a corrosion level of 7 percent, the residual bond strength decreased to 35 

percent of the original strength. Significant increase in crack width and rib profile loss was 

noticed at 5-7 percent of corrosion, resulting in the sharp reduction of 30 to 70 percent in bond 

strength, after which there was only 20 percent loss in bond strength up to 80 percent corrosion. 

The failure mode at a corrosion level of 4-6 percent is the splitting failure. The failure occurred 

suddenly at a very low free end slip. At the ultimate bond failure, a large slip was noted due to 

the slitting of specimens. The failure mode changed from splitting to continuous slippage at a 

corrosion level of around 12 percent, due to loss of rib profile, production of rust layer and loss 

of confinement.  

The results of a series of pull-out tests were reported in Rodriguez et al. (1994) to 

investigate the bond behavior of corroded RC beams, and the influence of c/d ratio, bar position 

and amount of stirrups on bond deterioration. Empirical formulas which best fitted the 

experimental data were then developed. Rodriguez et al. (1997) conducted a series of 

experiments on RC beams to study the effect of corrosion on their structural capacity. It was 

found that reinforcement corrosion reduced the strength at ultimate load, and increased both 

deflections and crack widths at service load. Reinforcement corrosion changed failure mode 

from bending to shear in most of the cases. The reduction of bar section at pits and cracking of 

concrete significantly reduced the load carrying capacity in corroded beams. The confinement 

produced either by transverse reinforcement or external pressure at support region had an 
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influence on residual bond strength. The load carrying of tested beams decreased by 20-40 

percent depending on the reinforcement ratio and arrangement. 

Auyeung et al. (2000) conducted pull-out tests with 19mm reinforcement to study the 

loss of bond strength under various corrosion levels (0-5.91 percent). They reported that low 

levels of corrosion less than one percent improved bond strength and bond stiffness. The bond 

strength increased by about 30 percent at a corrosion level of one percent. Corrosion levels of 

more than one percent caused reduction in bond strength. However, even after severe corrosion 

(5.91 percent), measurable bond strength still existed (about 23 percent of the original bond 

strength). Slip at failure decreased exponentially with corrosion, meaning that ductility reduced 

with corrosion. Cracking started when corrosion approached approximately 2 percent and 

deterioration accelerated after cracking. The specimen with less than 2 percent corrosion failed 

by simultaneous concrete splitting and pull-out failure, whereas those with 2 percent corrosion 

failed by splitting failure. Specimens with higher level of corrosion resulted in less brittle 

failure even the slip at maximum load decreased consistently.  

Al-Hammound et al. (2010) conducted nine beam tests to assess the bond behavior of 

non-corroded and corroded RC beams under both monotonic and fatigue loads. They reported 

that the fatigue bond strength reduced by 30 percent at a corrosion level of 3.9 percent, 

compared to the static bond strength reduced by 25 percent at the same corrosion level. The 

decrease in fatigue bond strength did not change significantly with fatigue life. The fatigue life 

of RC beams varied linearly with the applied load range with a very small slope. It was shown 

that fiber reinforced polymer (FRP) reinforcement can be an alternative to traditional methods 

for repairing and strengthening RC structures. 
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3.4.2.2 Numerical models 

Many experimental studies devoted to bond loss, such as those mentioned in the previous 

section, lead to the following conclusions: the corrosion of the reinforcement affects the bond 

strength. At the initial stage of corrosion, the rust penetrates into the porous media resulting in 

increased bond strength. As the volume of corrosion products increase with corrosion progress, 

cracking of surrounding concrete initiates and the bond between steel and concrete deteriorates 

(Figure 3-2). Therefore, the bond-slip relationship must be modified accordingly to incorporate 

the corrosion effects, shown in Figure 3-1. 

Rodriguez et al. (1994) proposed an expression based on their tests to calculate the 

residual bond strength and describe the descending branch of the corroded bond-slip curve: 

߬,௫
 ൌ ݔܭ

ି௰                                                                                                                    (3-10)                         

where τrb,max is the residual bond strength (MPa), xb is corrosion attack penetration or bar radius 

reduction (μm), and K and Γ are constants to fit with test results. 

Coronelli and Gambarova (2004) modified the bond-slip relationship based on 

Rodriguez et al. (1994), assuming the corrosion is uniformly distributed (at the same corrosion 

level xb), thus the bond-slip relationship is the same for the entire reinforcement. 
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where τc is contribution of concrete to bond, τs is contribution of stirrups to bond, f’t is the 

tensile strength of concrete, fy is yield stress of the stirrups, c/d is concrete cover to bar diameter 

ratio, str is spacing of stirrups, Atr is cross sectional area of stirrups and ψ, μ, and κ are empirical 

constants (Berto et al. 2008). 

This expression is obtained by fitting various experimental bond test results and 

depends on the material and geometrical characteristics of the test specimens. The validity of 
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this equation is limited to those cases where the general arrangement of the reinforcement is 

close to the tests conducted by Rodriguez et al (1996). 

Val and Chernin (2009) modified the bond-slip relationship based on some 

experimental results from several researchers. The proposed expression is as follows: 
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where τrb,max/τb,max is the normalized bond strength, representing the ratio of the residual bond 

strength under corrosion to the initial bond strength, xcr is the corrosion penetration 

corresponding to crack initiation in concrete cover (Equation 3-13), K1 is the initial increase of 

the bond strength after corrosion initiation, depending on confinement level provided by 

concrete cover and stirrups (Equation 3-14), and K2 is the rate of bond strength degradation 

after formation of cracks (Equation 3-15). 
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where a1 - a3 are coefficients, obtained by the regression analysis (μm), and ρ is the total area 

of stirrups within the development length to that of longitudinal reinforcement enclosed by 

stirrups. 

The bond stiffness between concrete and steel varies depending on the corrosion level. 

However, most of the current research focuses on the corrosion effect on bond strength. Not 

many researchers study the corrosion effect on bond stiffness. Some test results shows that the 
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variation of bond stiffness at different corrosion levels (Almusallam et al. 1996, Auyeung et 

al. 2000). Clark and Saifullah (1993) conducted a series of pull-out tests and found out that for 

both plain and ribbed bars, bond stiffness initially increased with increase of corrosion level 

and started to decrease just before bond strength reached the maximum value. Bond stiffness 

kept decreasing thereafter, with a high rate up to a stage when a visible crack appeared on the 

surface of concrete cover, and then with a very slow rate with further corrosion. However, this 

does not agree with the result from Al-Sulaimani et al. (1990), which indicated that bond 

stiffness decreased with increase of corrosion at the pre-cracking stage. In addition, some 

researchers believe that the expected possible reduction of bond stiffness due to corrosion will 

lead to a small decrease of structural stiffness of RC beams (Val and Chernin 2009). Further 

research might be needed to reach a unanimous conclusion. 

According to fib (2000), the bond stress can be determined using 
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The bond stiffness varies as the bond strength changes due to corrosion. A decrease of bond 

stiffness will be noticed when the corrosion is increasing. Using this formula, the variation of 

bond stiffness can be derived. 

3.5 Validation with experimental results 

Rodriguez et al. (1997) conducted experimental tests on 40 beams to assess the structural 

behavior of concrete structures with corroded reinforcement. The analytical models in this 

paper have been compared with their experimental results of two types of simply supported 

reinforced concrete beams (Type 11 and 31) with different corrosion levels. Type 11 and 31 

beams were different due to facts such as ratio of tensile and compressive reinforcements and 

spacing of shear reinforcement. Both the corroded and non-corroded beams were tested up to 
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failure. Two symmetrical point loads were applied at a distance of 200 mm from the middle 

section of the beam by a hydraulic actuator with a constant increasing rate. The vertical 

displacement at mid-span was continuously measured during the loading test and the slip 

between the ends of the bottom steel and the surrounding concrete was measured by dial-

gauges. Figure 3-3 and Table 3-2 show the geometry and corrosion level of the experimental 

beam samples. Material properties of the reinforcement are listed in Table 3-3. The load-

deflection curves obtained in the tests are plotted in Figures 3-8 and 9. 

3.6 Finite element modeling 

3.6.1 Concrete models 

Modeling of concrete is a very important aspect in simulating reinforced concrete structures. 

Currently, there are three different constitutive models for concrete available in ABAQUS: the 

brittle cracking model, the smeared crack concrete model and the concrete damaged plasticity 

model (ABAQUS 2012). The brittle cracking model is intended for the applications with a 

dominant tensile cracking, as the model is capable of considering the anisotropy induced by 

cracking. Compressive failure is not important and elastic behavior in compression is assumed. 

The smeared crack model is designed for the cases where the concrete is subjected to 

essentially monotonic straining, either tensile cracking or compressive crushing. The most 

important aspect of concrete behavior is assumed to be cracking. The representation of 

cracking and post-cracking anisotropic behavior dominates the modeling. The smeared crack 

model does not track individual “macro” cracks. Constitutive calculations are independently 

performed at each integration point. To account for the presence of the cracks, the stress and 

material stiffness at each integration point is updated if a crack occurs. This concrete model is 
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often used to model reinforced concrete structures (Thiagarajan and Roy 2005, Steinberg et al. 

2011, Valente 2012 and Li et al. 2014). 

The damaged plasticity model is designed for applications with the concrete under arbitrary 

loading conditions, such as cyclic and dynamic loading. It uses concepts of isotropic damaged 

elasticity in combination with isotropic tensile and compressive plasticity to represent the 

inelastic behavior of concrete and also accounts for stiffness recovery effects during cycle load 

reversals. The model is a continuum, plasticity based, damage model for concrete. Two main 

failure mechanisms: tensile cracking and compressive crushing are considered. The elastic 

behavior of concrete is assumed to be isotropic and linear. The damaged plasticity model is 

widely used to model reinforced concrete structures (Grace and Jensen 2008, Sinaei et al. 2012 

and Mohamed et al. 2012). It is selected to model the concrete in the FE models in this study. 

The uniaxial tensile and compressive behavior of concrete in damaged plasticity model is 

shown in Figure 3-4.  

3.6.2 Steel reinforcement models 

Within the framework of finite element modeling, there are three different approaches to model 

the steel reinforcement: the discrete model, the embedded model and the smeared model (El-

Mezaini and Citipitioglu 1991, Thiagarajan and Roy 2005). 

In the discrete model, the steel bar and the concrete are modeled as distinct elements. 

The interaction between concrete and steel are normally simulated using some interface 

elements or connectors. This approach is capable of capturing the bond-slip behavior between 

concrete and steel as well as the corrosion effect on the bond mechanism. The disadvantage of 

discrete modeling is the restriction that is imposed on the finite element mesh patterns by the 

location of reinforcement. In terms of element selection, different types of elements are 
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allowed in this approach. For example, both concrete and steel can be modeled using plane 

elements (Berto et al. 2008) or solid elements (Valente 2012). Using this method, the geometry 

of the steel bar, such as the shape of the ribs, can be accurately modeled to capture the effect 

of geometrical characteristics providing the option for an accurate and localized analysis. To 

achieve the increased accuracy, very fine meshes are required which result in high 

computational costs. A great application would be to model the concrete block with the 

reinforcement to study bond-slip relationship. The alternative method is to use line elements, 

such as beam or truss elements to model the reinforcement. Although this method significantly 

simplifies the real behavior, it requires specific constitutive law for interface elements. 

Therefore, it is still able to take into account the major aspects of bond phenomena and the 

geometrical characteristics of bond zone, such as rib size, bar size and spacing (Birgul et al. 

2003 and Koyuncu et al. 2003).  

In the embedded model, the steel bar and the concrete are modeled separately. The bar 

elements are then embedded into the host concrete element, so that the nodes of embedded bar 

elements have the same displacement as that of the concrete element. Example of the 

application of embedded model can be found in Darmawan and Stewart (2007), Mohamed et 

al. (2012) and Sinaei et al. (2012). The embedded model overcomes the problem of mesh 

dependence in discrete model. It allows independent choice of concrete mesh, however, the 

additional nodes of reinforcement increase the total number of degree of freedom (DOF) and 

the computational effect (El-Mezaini and Citipitioglu 1991). Moreover, this approach cannot 

simulate the bond loss between concrete and steel under corrosion. Perfect bond is assumed in 

this model. 
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In ABAQUS, the embedded model can be achieved by the constraint “embedded 

region”. The embedded element technique can be used to specify an element or a group of 

elements embedded in a group of host elements, which constrain the translational degrees of 

freedom of the embedded nodes (ABAQUS 2012). Different element types for embedded 

elements are allowed, for instance, solid elements embedded in solid elements, truss or beam 

elements embedded in solid elements, shell, membrane or surface elements in solid elements. 

Perfect bond is assumed if using this method. 

In the smeared model, reinforcing bars are assumed to be smeared into every element 

of concrete. The bars are modeled implicitly by adding its stiffness to the material property of 

concrete. Perfect bond is assumed in the smeared model. This model is frequently used for 

studying the global behavior of reinforced concrete structures. However, it cannot directly 

simulate the bond-slip behavior between concrete and steel. Considering that bond loss is a 

major issue when modeling corroded RC structures, this model is not appropriate. 

In ABAQUS, there is a rebar option, under which there are two ways to model the 

reinforcement: i) rebar layers; ii) element-based rebars. The first method is to define layers of 

uniaxial reinforcement in membrane, shell, and surface elements. Such layers are treated as a 

smeared layer with a constant thickness, which is equal to the area of each bar divided by the 

bar spacing. The way to define rebars in solid elements is to embed reinforced surface or 

membrane elements in the host solid elements. The second way is to define uniaxial 

reinforcement in shell, membrane, and solid elements as an element property. The element-

based rebar can be defined as individual bars in solid elements, or layers of uniformly spaced 

bars in shell, membrane, and solid elements (ABAQUS 2012). This method is more 



www.manaraa.com

92 
 

complicated than the first method. Both methods assume perfect bond between concrete and 

steel. 

For corroded RC structures, when the bond mechanism and the corrosion effect on 

bond need to be modeled, the discrete model is necessary. However, some researchers believe 

that the effect of bond-slip can be included by the application of tension stiffening (Thiagarajan 

and Roy 2005). Therefore, the bond-slip behavior of RC structures can be modeled using the 

embedded or smeared model with tension stiffening.  

In order to assess the structural performance of RC structures subjected to corrosion, 

the reinforcement is modeled explicitly using the discrete model in this study. The bilinear 

hardening model of steel, which is widely used, will be adopted for the steel reinforcement in 

the FE models. 

3.6.3 Bond modeling 

The interaction between concrete and steel, i.e. bond-slip effect, can be modeled via different 

ways or different interface elements. Coronelli and Gambarova (2004) proposed a two 

dimensional FE model to investigate the structural response of corroded RC beams with four 

node plane stress elements for the concrete and two node truss elements for the reinforcement. 

The bond behavior between concrete and steel was modeled via bond-link elements, which 

exhibited a relative slip between concrete and steel. Similarly, Val and Chernin (2009) 

developed a two dimensional FE model to study the behavior of RC beam with corroded 

reinforcement. The two node beam element with three DOFs was used for the concrete and the 

two node bar element with one DOF was used for the corroded reinforcement. The interface 

element, which modeled the bond and its deterioration under corrosion, is a four node element 

with two nodes having three DOFs and two nodes having only one DOF. Both Coronelli and 
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Gambarova (2004) and Val and Chernin (2009) verified their model with available 

experimental data. 

In ABAQUS, there are two main options to model the bond slip relationship: springs 

either linear or non-linear and connectors either Translator or Axial. Koyuncu et al. (2003) 

modeled a simply supported AASHTO Type-III I-girder in ABAQUS using eight node solid 

elements for the concrete and two node truss elements for the tendons. The truss elements were 

connected to the concrete at the nodes through linear springs with constant stiffness. Linear 

elastic bond-slip behavior was assumed in the FE model. As a matter of fact, the bond-slip 

behavior is a nonlinear relationship, therefore, in order to capture the nonlinear behavior and 

the deterioration due to corrosion, non-linear spring elements are selected to model the bond-

slip behavior between concrete and steel for the FE models in this study. 

Spring elements can couple a force with a relative displacement. They can model actual 

physical springs as well as idealize axial and torsional components (ABAQUS 2012). Spring 

elements can either be between a node and ground or between two nodes. The spring elements 

used in this study are defined between two nodes with a fixed direction (Figure 3-5). 

The relative displacement across the spring element is the difference between the mth 

displacement component of the first node and the nth displacement component of the second 

node:  

ݑ∆ ൌ ଵݑ െ  ଶ                                                                                                                     (3-17)ݑ

The direction of action for the spring element is defined by giving the DOF at each node of the 

element. The DOF can be in a local coordinate system, which is assumed to be fixed. To obtain 

a tensile spring, the element should be set up as shown in Figure 3-5, so that when u1
m = 1 and 

u2
n = 0, the force in the spring element is positive and the spring appears to be in tension. 
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Other option in ABAQUS for modeling the bond-slip behavior is to use connectors, 

such as Translator or Axial, which can provide a connection between two nodes and define 

linear or nonlinear spring-like behavior. Li et al. (2014) developed a 2-D FE model in 

ABAQUS for RC seawalls subjected to corrosion. The compressive steel bar was assumed to 

be perfectly bonded with the concrete and the tensile steel bar was connected to the concrete 

through the line element Translator. The translator has two nodes, but only the displacement 

in the x-axis of local coordinate system is enabled and all other DOFs of the two nodes are 

relatively restrained to each other. Thus, only axial relative movement between the two nodes 

is allowed. The two nodes of the translator are connected to the concrete and the steel nodes, 

respectively, representing the physical bond. The bond-slip relationship considering corrosion 

effect can be assigned to the force-displacement relationship of the translator. Their FE results 

were then compared with the experimental results, showing a good agreement between the 

numerical and experimental results. 

As mentioned before, the effect of bond-slip behavior may also be modeled 

approximately by introducing some tension stiffening into the concrete modeling (ABAQUS 

2012). Tension stiffening characterizes concrete ability to carry tension between cracks. 

Tensile force is carried by both concrete and steel in RC beams. After concrete cracks, the load 

is transferred across cracks though the steel at individual cracks. Tension stiffening decreases 

tension in the steel due to bond. In terms of numerical modeling, it can reduce the mesh 

sensitivity and hence improve the accuracy of the FE models in presenting cracks. It can also 

improve the stability of numerical solutions. The amount of tension stiffening depends on 

factors such as density of reinforcement, quality of bond, relative size of concrete aggregate 

compared to rebar diameter and mesh of the FE model. Tension stiffening can be specified by 
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means of a post-failure stress-strain relation or by applying a fracture energy cracking criterion 

(ABAQUS 2012). Therefore, by appropriately modifying the post-cracking stress-strain 

relation of the concrete model, a reasonable amount of tension stiffening can be included to 

approximately model the bond-slip effect. Examples of the application of tension stiffening to 

model the bond-slip behavior is presented in Thiagarajan and Roy (2005). However, this 

method can only approximately model the effect of bond-slip. The amount of tension stiffening 

needs to be estimated and calibrated to each particular case. In order to directly apply the 

nonlinear constitutive law of bond and the corrosion effect on bond to obtain more accurate 

results for corroded RC beams, a discrete model of steel with a proper type of interface 

elements presenting bond is necessary. 

3.6.4 Element type 

Sinaei et al. (2012) proposed a three dimensional model in ABAQUS to study the structural 

behavior of RC beams. The concrete was modeled using an eight node linear brick element 

with reduced integration. The reinforcement was modeled using a three dimensional two node 

linear truss element. The reinforcement was embedded in the solid elements of concrete. The 

FE results were compared with the experimental data for the beams under flexural loading. It 

was shown that the mid-span deflection, the tensile strain of reinforcement, and the 

compressive strain of concrete from FE models were in good agreement with the experimental 

results. Mohamed et al. (2012) developed a three dimensional model in ABAQUS for 

reinforced concrete deep beams, the result of which showed a good agreement with the 

experimental result. The concrete was modeled using eight node solid elements and the 

embedded reinforcement was modeled using three dimensional truss elements. Similarly, 

Darmawan and Stewart (2007) and Grace and Jensen (2008) modeled RC beams in ABAQUS  
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using eight node solid elements for concrete and two node truss elements for steel strands. The 

results showed the selections of element types were efficient. 

In this study, three dimensional eight node solid element is selected to model the 

concrete for the FE models, and three dimensional two node truss element is selected to model 

the steel reinforcement. 

3.6.5 FE model development 

Three dimensional nonlinear finite element models, which are capable of considering the 

nonlinearity of material and geometric properties, are proposed in this paper to model the tested 

beams in the experiment test by Rodriguez et al. (1996). The analysis was conducted in FE 

software ABAQUS. Three dimensional eight node solid elements are selected for the concrete 

beam. The reinforcement is modeled using the three dimensional two node linear truss 

elements. 

The interaction between the concrete and steel, i.e. bond-slip effect, is modeled via 

spring elements. In this study, to capture the effects of bond deterioration on structural 

behavior, nonlinear springs have been introduced on the interface of the concrete and truss 

elements. For intact beams (Beam 111 and 112, Beam 311 and 312), the truss elements are 

embedded in the solid elements. The finite element model is shown in Figure 3-6. 

The bilinear hardening model (Figure 3-7left) is adopted for the steel reinforcement, 

with a density of 7850 kg/m3, Young’s modulus of 200 GPa, and Poisson’s ratio of 0.3. The 

damaged plasticity model is selected to model the concrete material. This material is capable 

of considering the degradation of the elastic stiffness induced by plastic straining both in 

tension and compression (ABAQUS 2012). The nonlinear tension stiffening effect after 
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concrete starts cracking is also included. The constitutive model for concrete is shown in Figure 

3-7right. 

The modified bond-slip relationship considering the corrosion effects is adopted for the 

models of corroded beams. The elements used to model bond-slip effect are nonlinear springs. 

The displacement can represent the slip between concrete and steel. The force in the spring is 

the bond stress multiplied by the contact area between steel and concrete along element length. 

ܨ ൌ ߬ܣ௧. ൌ ߬(18-3)                               ܮ݀ߨ 

where d is the diameter of the reinforcement and L is the element length. 

The residual bond strength ߬ୠ,୫ୟ୶
୰  under corrosion can be calculated by Equations 3-10 

to 3-12. Table 3-4 compares the residual bond strength for the corroded beams using these 

equations which shows that the two methods are fairly comparable. 

3.7 Results and discussions 

The results of the finite element analysis are shown in Figures 3.8 and 3.9. Type 11 beams with 

low reinforcement ratio failed by tensile reinforcement according to the test results. Beam 111 

is a non-corroded beam that shows a stiffness degradation when bottom bars reaches the yield 

stress. In the finite element model, the bottom steel yields at a load of 41.36 kN. The crushing 

of concrete does not initiate when the tensile steel yields. The concrete at the bottom near mid-

span starts to crack when the applied load reaches 26.25 kN, After concrete cracks, the stiffness 

of the beam decreases drastically. 

The corrosion-induced mass loss at the level of bottom bars in Beam 115 is equal to 

13.9%. The load versus mid-span deflection curve of this beam with low corrosion level is 

similar to that of the non-corroded beam.  Concrete at the bottom starts to crack when the 

applied load reaches 21.67 kN, followed by the significant stiffness degradation. Then the 
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tensile reinforcement yields at a load of 32.50 kN. The load carrying capacity of the beam 

decreases by 21.4% compared to the pristine beam. The concrete cover is not heavily 

deteriorated as the corrosion of the compressive reinforcement is only 12.6%. The crushing is 

not initiated in concrete when the bottom steel yields. 

The corrosion of the tensile steel in Beam 114 is 17.2%. The cracking in concrete 

initiates when the load reaches 18.22 kN, which is much lower than 26.25 kN for the pristine 

Beam 111. The concrete crushing occurs prior to the tensile steel yielding due to heavily 

corroded top reinforcement (24.3% mass loss due to corrosion). The bottom bar yields at a load 

of 30.22 kN. The load carrying capacity decreased by 26.9% compared to the pristine beam. 

Beam 116 is heavily corroded. According to the test, Beam 116 finally fails due to pits 

in the tensile bars. The maximum value at pitting in the bottom bars is 2.1mm. The pitting 

corrosion is not considered in the finite element model; only general corrosion which is 26.4% 

is applied to the model. Yielding in the bottom bars occurs at 26.76 kN. The load carrying 

capacity decreases by 35.3% when only general corrosion is considered. 

Type 31 beams with high reinforcement ratio fail by concrete crushing according to 

Rodriguez et al. (1996). A slope change occurs when tensile steel yields in the pristine beam 

311. In the finite element model, the bottom steel yields when the applied load reaches 104.49 

kN, which is much higher than the load carrying capacity of Type 11 beams due to its higher 

reinforcement ratio. After the tensile steel yields, the curve follows a quasi-horizontal line. The 

cracking of concrete first starts at a load of 18.09 kN, after concrete starts cracking a slope 

degradation of the load-displacement curve is observed which indicates the stiffness 

degradation. Top concrete crushes when the applied load reaches 76.42 kN. The crushing 

occurs before the yielding in the bottom steel. 
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Beam 313 with a corrosion level of 9.8% in tensile bars fails in a lower load compared 

to the pristine Beam 311. The concrete at the bottom of the beam near the mid-span cracks first 

when the load reaches 13.86 kN resulting in degradation of stiffness. The crushing of 

compressive concrete occurs at a load of 61.83 kN while the tensile steel yields later at a load 

of 86.83 kN with a 16.9% decrement in load carrying capacity. 

In Beam 314, with 15.4% corrosion level, crushing in compressive zone starts due to 

extensive corrosion in compressive steel (12.6%), when the applied load reaches 43.93 kN, 

which is much earlier than the yielding of the tensile steel. It can be seen from the above that 

the failure mode of non-corroded beams depends on the reinforcement ratio, in such a way that 

lightly reinforced beams fail by the yielding of tensile reinforcement without concrete 

crushing, while moderately reinforced beams are more likely to fail by concrete crushing. The 

deterioration of the reinforcement significantly affects the structural behavior of reinforced 

concrete structures, such as load carrying capacity. 

There is reasonably good agreement between the experimental results and the finite 

element results. The main differences are the initial slope of the load versus deflection curves 

and the overestimation of the load carrying capacity of the corroded beams in the finite element 

results. A major reason for these discrepancies is the naturally stiffer models in finite element 

simulation compared to the beams in experimental tests, because of the existence of cracks in 

the test specimens before loading. The numerical results overestimate the load carrying 

capacity of the corroded beams because the finite element models account only for general 

corrosion, i.e. the pitting corrosion is not considered. However, in the test, the localized 

corrosion usually happens, which causes the non-uniform reduction of load carrying capacity 

and may lead to structural failure at the maximum pitting locations. Beam 116 is a good 
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example of this case as it fails due to pitting corrosion in the tensile reinforcement, which 

explains why the curve obtained from the numerical result is higher than the curve obtained 

from the test.  

Crack patterns can also be obtained from the finite element models. As damaged 

plasticity model is adopted for concrete, the crack patterns in the concrete beam can be 

visualized by introducing the concept of an effective crack direction (ABAQUS 2012). 

Concrete cracking initiates at points where the maximum principal plastic strain (PE, MAX. 

Principal) is greater than zero. The direction of PE, MAX. Principal is assumed to be parallel 

to that of the vector normal to the crack plane. This direction is shown in Figures 4-10 to 4-12, 

indicating the crack patterns of Type 31 beams (311, 313 and 314) under a load of the same 

value 84kN. 

The crack initiated from the concrete at the bottom near the mid-span and propagated 

upwards. There were more cracks growing along the span when the load was increasing. It can 

be seen from those figures that subjected to the same external loading, the higher the corrosion 

level was, the more cracks the beam had. The non-corroded Beam 311 had the least cracks, 

while cracks in Beam 313 grew deeper towards the top of the beam. The relatively highly 

corroded Beam 314 had the most cracks and the cracks near mid-span were very severe with 

relatively large openings. 

It can also be noted that for the same beam under the same loading, the mid-span 

deflection increased a lot when the corrosion increased. At a load of 84kN, the pristine beam 

(311) had a deflection of 9.78mm, while the mid-span displacements of the corroded beams 

(313, 314) are 12.58mm and 33.29mm, respectively. It can be known from all above that 

corrosion may also cause serviceability failure due to excessive cracking or deflections. 
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3.8 Conclusions 

This paper studies the adverse effects of corrosion in reinforcement on structural behavior of 

reinforced concrete beams. Finite element modeling of such structures requires effective 

nonlinear models to capture all the major effects of corrosion such as bond degradation, 

reduction in steel cross section and change of material properties. A nonlinear finite element 

model which is able to take into account all the parameters above is presented and verified 

with the available experiment data. Special attention is drawn to model the bond between 

concrete and reinforcing steel as well as its deterioration under different corrosion levels. The 

results presented in this paper clearly show that corrosion affects the strength and ductility of 

a structure at ultimate condition. For instance, the load carrying capacity of Type 11 beams 

was reduced by 21.4% - 35.3%, depending on corrosion level. The corrosion may also cause 

excessive cracking and deflection, which leads to serviceability failure. The analytical model 

can provide a good prediction of the damage process of reinforced concrete structures 

subjected to corrosion. 
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Table 3-1. Parameters in the bond-slip model for normal strength concrete 

τb,max τf α S1 S2 S3 S4 

0.45f’cm 0.4τb,max 0.4 1mm 3mm Clear rib spacing 3ൈrib spacing 

         f’cm is the mean compressive strength of concrete. 

 

Table 3-2. Corrosion levels of test beams  

 
Beam type 

 
Beam number 

Concrete f’c 

(MPa) 

Attack penetration (mm) 
(general corrosion) 

bottom top stirrups 

11 111 49.9 - - - 
 112 49.9 - - - 
 114 36.8 0.45 0.52 0.39 
 115 31.4 0.36 0.26 0.37 
 116 31.4 0.71 0.48 0.66 

31 311 48.8 - - - 
 312 48.8 - - - 
 313 35.8 0.30 0.20 0.35 
 314 35.8 0.48 0.26 0.50 

 

Table 3-3. Material properties of reinforcement 

Bar diameter  
(mm) 

Yield stress  
(MPa) 

Ultimate stress  
(MPa) 

6 626 760 
8 615 673 

10 575 655 
12 585 673 

 

Table 3-4. Residual bond strength of corroded Type 11 beams 

Beam No. 
Attack penetration  

(mm) 
Equation    

4-10 
Equation     

4-11 
Equation    

4-12 

114 0.45 3.37 3.25-4.33 4.1 

115 0.36 3.37 3.30-4.40 4.13 

116 0.71 3.37 3.11-4.14 4.04 
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Figure 3-1. Bond-slip model 

 

 

Figure 3-2. Schematic variation in bond strength with corrosion level 
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Figure 3-3. Geometry of the test beams (dimensions are in mm) (Rodriguez et al. 1996) 

 

 

Figure 3-4. Constitutive model of concrete in compression (left) and tension (right) 

(ABAQUS 2012) 

 

 

Figure 3-5. Configuration of SPRING2 element (tensile spring) 
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Figure 3-6. FE models of the tested beams: Type 11 (left) and Type 31(right) 

 

 
 

Figure 3-7. Constitutive model of steel (left) and concrete (right) 
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Figure 3-8. Comparison of experimental and FE results for Type 11 beams 

 

Figure 3-9. Comparison of experimental and FE results for Type 31 beams 
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Figure 3-10. Crack pattern of Beam 311 (Pristine) 

 

Figure 3-11. Crack pattern of Beam 313 (Low corrosion) 

 

Figure 3-12. Crack pattern of Beam 314 (Medium corrosion) 
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CHAPTER 4. SEISMIC PERFORMANCE OF REINFORCED 

CONCRETE STRUCTURAL COMPONENTS IN CORROSIVE 

ENVIRONMENTS 

A paper submitted to the journal of Structural Engineering (ASCE) 

Zhen Cui, Alice Alipour 

4.1 Abstract 

Degradation induced by corrosive mechanisms is one of the major issues with the serviceability 

and strength of the reinforced concrete (RC) structural components. In addition to degrading 

effects of the corrosion, most of the structures are exposed to one or multiple hazards such as 

seismic events. This paper studies the structural response of RC columns under earthquake 

hazards while they are constantly exposed to chloride attack. Chloride-induced corrosion 

results in a series of degrading mechanisms such as reduction of cross sectional area of steel, 

reduction of strength and ductility of steel, degradation of concrete material properties, and 

deterioration of bond. A three dimensional (3D) nonlinear finite element (FE) model is 

presented to account for all of the degradation mechanisms. The results from a set of 

experimental tests are used to validate and verify the results from the FE models. Then the 

extent of structural degradation and its effect on the characteristics of the RC components has 

been calculated over the entire life of the structure. Two approaches of seismic analysis: 

equivalent static analysis and nonlinear time history analysis have been conducted to evaluate 

the seismic performance of corroded columns at multiple time periods during their lifecycle. 

The location, type, and extent of damage in the columns have been identified under various 

hazard levels. Furthermore, two different case studies are presented to investigate the seismic 

performance when different regions of one structural component are subjected to different 
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corrosion mechanisms due to specific exposure conditions. The results show that corrosion can 

significantly reduce the seismic capacity of RC members, underlining the necessity of 

considering it in the design procedure. The outcome of this research will help engineers and 

inspectors improve their designs, identify necessary test regions and define comprehensive 

inspection plans, as well as optimize rehabilitation strategies for RC structures under multi-

threat areas. 

Keywords: seismic performance, corrosion, reinforced concrete, finite element analysis 
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4.2 Introduction 

Reinforced concrete structures are subjected to various natural hazards and environmental 

stressors during their lifetime. Earthquakes are one of the major natural hazards that impact 

civil structures, leading to enormous economic loss. Simultaneously, structures are 

continuously aging and rapidly deteriorating in their lifecycle, becoming increasingly 

vulnerable to catastrophic failure during probable hazards. The corrosion of reinforcement has 

been identified as one of the main causes of deterioration for RC structures and could adversely 

affect the capacity and serviceability of RC structures. Neglecting corrosion effects may 

significantly overestimate seismic performance of structures in corrosive environments. 

Therefore, in real conditions, simultaneous effects of both earthquake and corrosion must be 

taken into account to obtain a more accurate and reliable prediction of the lifetime performance 

of RC structures.  

Significant efforts have been made by researchers to assess seismic structural 

performance and improve seismic design (Dhakal and Maekawa 2002, Moyer and Kowalsky 

2003, Lehman et al. 2004, Spiliopoulos and Lykidis 2006, Duan and Hueste 2012, Baran et al. 

2014). Alipour and colleagues have conducted extensive research on corrosion initiation and 

propagation in RC members and the extent of capacity loss with different corrosion levels 

(Alipour et al. 2012, 2013a and b, Shafei et al. 2012 and 2013, Cui and Alipour 2014, Furtado 

and Alipour 2014, Shafei and Alipour 2015a and b, Klinga and Alipour 2015, Alipour and 

Shafei 2016a and b, Alipour 2016 and 2017). Other studies have focused on chloride-induced 

corrosion effects due to reinforcement corrosion in RC structures (Xia et al. 2015, Ou et al. 

2016, Zhang et al. 2016). There have been a number of experimental studies focused on cyclic 

performance of corroded RC members (Ma et al. 2012, Ou et al. 2012, Meda et al. 2014, Guo 
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et al. 2015) and some research efforts concentrated on assessment of corroded structures under 

earthquake events. Akiyama et al. (2011) investigated displacement ductility capacity and 

reliability of corroded RC piers under earthquakes using a single degree of freedom pier model 

and considering only rebar buckling for estimating failure probability. However, due to the 

limitations of the simplified model, the true demand on bridge pier was not captured. Ou et al. 

(2013) conducted a static analysis to evaluate the seismic capacity of corroded RC bridges 

assuming that corrosion is only located at column ends. Biondni et al. (2015) studied seismic 

resilience of corroded RC structures using a static analysis. All these studies were conducted 

using simplified numerical models to obtain overall behaviors, mainly residual capacity (load 

versus lateral displacement curves), but were not able to capture the details of local damages 

and energy dissipation. Ghosh et al. (2011) estimated seismic loss for corroded RC bridges 

using a 3D finite element (FE) model but only considered corrosion effects in the forms of 

steel area loss in columns and degradation in bridge bearings. Inci et al. (2013) conducted 

nonlinear pushover and time history analyses on a corroded RC frame building to assess the 

seismic performance by updating the damage level using concrete and steel strains. Yalciner 

et al. (2015) assessed the seismic response of a corroded 50-year-old RC building by 

incremental dynamic analysis only considering two corrosion effects (steel area loss and bond-

slip relationship) varying with time. Although these studies were focused on seismic 

performance of RC structures subjected to chloride-induced corrosion, none of them included 

all the major deteriorating effects due to reinforcement corrosion or updated all the nonlinear 

time-dependent parameters with time during the corrosion process. The number of studies that 

looked into corrosion-induced structural degradation effects from a perspective of analytical 

or numerical evaluation is very limited (Alipour 2010, Alipour and Shafei 2011 and 2014). 
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Kashani et al. (2014) proposed a fiber-based model to simulate the cyclic behavior of corroded 

RC columns. However, the model was more focused on the global behavior of the column, 

such as hysteretic loops and pushover analysis, rather than the local damage extent due to 

corrosion, such as the extent of concrete local crushing and cover cracking. Furthermore, the 

study did not consider the effects of corrosion-induced bond deterioration due to the limitations 

in the developed model. 

This paper aims to fill in the gap through development of a detailed 3D nonlinear finite 

element framework that is able to capture all the chloride-induced corrosion effects, such as 

reduction of steel cross sectional area, reduction of steel strength and ductility, degradation of 

concrete properties, and deterioration of bond between concrete and steel. The extent of 

structural degradation is updated as a function of the age of the structure and is based on 

realistic estimations of corrosion processes. Moreover, the proposed framework is capable of 

providing the full details of the region and extent of damage, such as concrete crushing and 

crack propagation, steel yielding and local bond failure. The percentages of concrete and steel 

damages are presented based on the FE results and previous standards. The developed FE 

models have been validated by the previously available experimental test. Both equivalent 

static analysis and nonlinear time history analysis are performed and the seismic performance 

of corroded RC structures under different hazard levels at various time periods during their 

lifecycle are obtained. Furthermore, the variability on the extent of corrosion as it is observed 

in real life structures is implemented in the model. Two different case studies are presented in 

this paper to investigate this effect. This study provides a detailed and comprehensive approach 

to evaluate the seismic performance of corroded RC structures that would increase the 
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reliability of lifetime performance of the structures to help decision makers prioritize 

maintenance and rehabilitation strategies for RC structures in the regions with multiple threats. 

The paper consists of the following sections: i) corrosion initiation and propagation, ii) 

effect of corrosion on structural degradation, iii) FE models and model validation, iv) seismic 

performance of corroded bridge columns using equivalent static and nonlinear time history 

analyses, and v) two case studies of considering nonuniform levels of corrosion in the structural 

components. 

4.3 Corrosion initiation and propagation 

The corrosion of reinforcement is one of the main causes of deterioration of RC structures 

(Cairns et al. 2005, Val and Chernin 2009, Apostolopoulos et al. 2013). In coastal areas with 

airborne sea salt particles or in regions with harsh winters and high exposure to deicing salts, 

chloride-induced corrosion is the dominant mechanism of deterioration. The chloride-induced 

corrosion is an electrochemical process. The alkaline environment of concrete surrounding 

reinforcing steel results in the formation of a passive film of iron oxides at the steel surface, 

which can protect the steel from corrosion. When chloride ions penetrate into the concrete, and 

reach a threshold concentration value, the PH value changes and the protective film on the 

reinforcing steel is depassivated and corrosion initiates. After corrosion initiation, steel is 

consumed and corrosion products (rust) are formed at the interfacial transition zone (ITZ) 

between the concrete and steel. The expansive rust will gradually fill the ITZ around the steel 

and then pressurize the surrounding concrete, causing initiation of concrete cracks. After crack 

initiation, the volume expansion of rust leads to crack propagation and eventually spalling of 

concrete cover indicating the service failure of structures. In some cases this service failure is 

also associated with extreme capacity loss and limit state failure. The extent of structural 
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deterioration caused by chloride-induced corrosion during its lifecycle can be calculated based 

on the mass loss of steel over time, which is quantified using Faraday’s Law. Faraday’s Law 

relates the mass of steel consumed in the corrosion process to the amount of current flow during 

the electrochemical reaction and has been used extensively in the literature to estimate the steel 

mass loss over time (Pantazopoulou and Papoulia 2001, EI Maaddawy and Soudki 2007, Lu et 

al. 2011). 

௦௧ሺtሻܯ ൌ
ூ௧

௭ி
                                                                                                                          (4-1) 

where m is the atomic mass of iron (56g for Fe), F is Faraday’s constant, which is 96500 A∙s, 

z is the ionic charge (for instance, 2 for Fe→Fe2++2e-), t is the time after corrosion initiation 

(s), and I is the current (I = asicorr (A), as is the surface area of the steel bar, icorr is the current 

density (A/cm2)). For a unit length of a rebar, as = πd. Thus, the mass loss of steel per unit 

length of a rebar for a time step after corrosion initiation, Δt (s), is calculated as: 

௦௧ሺtሻܯ ൌ
గௗೝሺ௧ሻ

௭ி
݅ݐ߂ ൌ 2.894 ൈ 10ିସ݅݀ߨሺݐሻ(2-4)                                                    ݐ߂ 

where dr is the residual rebar diameter. In this study, the corrosion rate, icorr, is assumed to be 

2 μA/cm2, which is within the normal range of corrosion rate (Jamali et al. 2013). The density 

of steel is taken as 7.8g/cm3. Hence, the volume change of consumed steel per unit length can 

be calculated as follows: 

௦௧ሺtሻܣ ൌ
ெೞሺ௧ሻ

ఘೞ
ൌ 3.709 ൈ 10ିଵ݀ߨሺݐሻ(3-4)                                                                          ݐ߂ 

The residual diameter of rebar after each time step can be calculated as 

݀ሺݐሻ ൌ ට݀ଶ െ ସೞሺ௧ሻ

గ
                                                                                                           (4-4) 
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Substituting Equation (4-3) to Equation (4-4), the residual rebar diameter at a certain time step 

can be determined. Thus, the mass loss of steel over time due to corrosion can be determined 

based on Equation (4-2).  

4.4 Effect of corrosion on structural degradation 

The effect of chloride-induced corrosion on steel reinforcement can be accounted for by i) 

reducing the cross sectional area, ii) decreasing yield and ultimate strengths, and iii) enforcing 

a lower ultimate strain in the constitutive model. Figure1 details out the considered degradation 

mechanisms and governing numerical equations to calculate them. 

The cross sectional area reduction of the steel bar can be calculated using the equation 

shown in Figure 4-1. In the figure, Ar
st is the residual cross sectional area of a steel bar, d is the 

initial diameter of the bar, xb is the corrosion depth or radius reduction of the bar, and λb takes 

into account the possibility of a one-sided or two-sided corrosion attack penetration since 

corrosion can occurs in two forms: uniform and pitting corrosion. For uniform corrosion, λb is 

equal to one (Berto et al. 2008). 

The yield strength and uniform elongation of steel is progressively impaired after 

corrosion initiation (Apostolopoulos et al. 2013). In high levels of corrosion, steel becomes 

very brittle which can result in sudden rupture of reinforcement and ultimately the structural 

failure. The residual yield and ultimate strengths, as well as the ultimate strain of corroded 

reinforcement can be estimated using the empirical formulas in Figure 4-1 (Cairns et al. 2005). 

Here, fy
r and fu

r are the residual yield and ultimate strengths of corroded reinforcement, 

respectively, fy
0 and fu

0 are the yield and ultimate strengths of original reinforcement, 

respectively, εr
su is the ultimate strain of corroded reinforcement, ε0

su is the ultimate strain of 

original reinforcement, and η100 is the percentage of steel mass loss, calculated from the 
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consumed steel mass per unit length divided by the initial steel mass per unit length 

(η100=Mst/M0×100). The above formulas were derived based on available experimental data 

(Du et al. 2005a and b), and are consistent with the more recent experimental tests (Kashani et 

al. 2013). 

The expansion of rust around the steel rebar exerts internal pressure to the surrounding 

concrete during the corrosion process and eventually results in cover cracking, spalling or 

delamination. Although, most corrosion processes start with pitting corrosion, they then 

develop into uniform corrosion as the corrosion process progresses. Uniform corrosion is 

known to be the major cause of most of concrete cover spalling compared to pitting corrosion 

(Berto et al. 2008). The corrosion effect on concrete can be considered by the formation of 

cracks and degradation of compressive strength in concrete cover, as well as a brittle post-peak 

behavior in the compressive constitutive model of the concrete (Coronelli and Gambarova 

2004). The reduced compressive strength of concrete can be calculated using the equations in 

Figure 1, where εc is concrete strain at the compressive strength, f’c, εa is the average tensile 

strain in cracked concrete perpendicular to the direction of the applied compression, R is a 

coefficient related to the roughness and diameter of reinforcement (R = 0.1 (Coronelli and 

Gambarova 2004)), b0 is the original width of the cross section, b1 is the increased width due 

to corrosion cracks, n is the total number of reinforcement in the top layer, w is the total crack 

width (Molina et al. 1993), wi is the width of each single crack, and λ is the volumetric ratio, 

which varies depending on the composition of corrosion products. Recent research (Lu et al. 

2011) shows that the value of the volumetric ratio is around 3.0. 

The bond-slip relationship between concrete and steel can be characterized by different 

stages based on fib 2010 (Figure 4-1). At the first stage, there is a nonlinear increase of bond 
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stress up to the maximum bond strength, τb,max. Then the decreasing slope indicates the 

degradation of stiffness which is an indicator of damage progress. Normally under confined 

conditions, the bond stress remains constant for a certain range of slip. After that, the bond 

stress will decrease to a much smaller constant level, τf. This curve indicates a typical 

mechanism for pull-out failure (solid line). However, if there is a lack of confinement or a 

progress in corrosion, the horizontal stage will become inclined with a negative slope 

representing a splitting failure rather than a pull-out failure (dashed line). The behavior and the 

mathematical model detailing this is shown in Figure 4-1, where τb is bond stress, S is slip, 

τb,max is maximum bond stress, τf is the bond stress at the lower constant level (40% of τb,max), 

α and S1~S3 are the parameters of the model. 

Experimental studies of corrosion effects on bond strength of RC members show that 

reinforcement corrosion has a large impact on the bond strength. At the initial stage of 

corrosion, the growth of expansive rust increases the roughness of interface between concrete 

and steel resulting in increased bond strength. As the rust volume further increases with 

corrosion progress, cracking of surrounding concrete initiates and the bond between steel and 

concrete deteriorates. However, even at very high levels of corrosion, there is still some 

residual bond strength remaining. Based on experimental observations, the bond model must 

be modified accordingly to incorporate the corrosion effects (fib 2000). Many researchers have 

studied the residual bond strength variation with corrosion levels (Val and Chernin 2009, 

Coronelli and Gambarova 2004, Rodriguez et al. 1994). In this study, the bond deterioration 

model provided by Val and Chernin (2009) has been used (Figure 1). τrb,max is the residual bond 

strength (MPa), τrb,max/τb,max is the normalized bond strength (the ratio of the residual bond 

strength of the corroded rebar to that of the pristine rebar), xcr is the corrosion penetration 
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corresponding to crack initiation in the concrete cover, K1 is the initial increase of bond strength 

after corrosion initiation, depending on the confinement level provided by concrete cover and 

stirrups, K2 is the rate of bond strength degradation after crack formation, f’t is the tensile 

strength of concrete, c/d is concrete cover to bar diameter ratio, a1 - a3 are coefficients, obtained 

by the regression analysis (μm), and ρ is the total area of stirrups within the development length 

to that of longitudinal reinforcement enclosed by the stirrups. 

4.5 Finite element models and model validation 

Finite element analysis is used to investigate the seismic response of RC columns under 

earthquake motions. The results from an experimental test by Ma et al. (2012) have been used 

to validate the generated FE model results. In the experiment, a total of 13 RC circular columns 

with different corrosion levels were tested under combined cyclic lateral loadings and constant 

axial loadings to investigate the behavior of corroded RC columns. The results from the pristine 

column in the experimental test are used as the baseline to validate the developed FE models 

of the pristine column. Each column is 260mm in diameter and 1000mm in height with a 

1300mmൈ360mmൈ400mm stub (Figure 4-2). The clear concrete cover to the spiral stirrups is 

30mm. The 28-day compressive strength of the concrete is 32.4MPa. The longitudinal 

reinforcement in both column and stub is 16mm in diameter. The spirals are 8mm in diameter 

with a spacing of 100mm. An axial load of 258.03kN is applied on the column. The cyclic 

loading portfolio applied on the column is provided in Figure 2b. The proposed three 

dimensional FE model is capable of considering the nonlinearity of both material and 

geometric properties. It utilizes 3D eight node solid elements for the column concrete and 3D 

two node truss elements for the reinforcement. The bond-slip interaction between concrete and 
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steel is modeled via nonlinear spring elements at the interface of solid and truss elements (Cui 

and Alipour 2016 and 2017). The generated FE model of the column is shown in Figure 4-3. 

Damaged plasticity model is selected to model the concrete material. This model 

considers the degradation of the elastic stiffness induced by plastic straining both in tension 

and compression, and allows for the control of stiffness recovery effects during cyclic load 

reversals (ABAQUS 2012). The nonlinear tension stiffening effect after concrete starts 

cracking can also be included. The reduction of the elastic modulus is expressed in terms of 

the scalar degradation variable, d1 (dc or dt). 

ܧ ൌ ሺ1 െ ݀ଵሻܧ                                                                                                                     (4-5) 

where E0 is the initial modulus of the concrete and d1 is the damage variable which could be 

set as dc or dt. dc and dt are damage variables for concrete in compression and tension, 

respectively. When the load changes from tension to compression, tensile cracks tend to close 

which lets compression stiffness to recover. On the other hand, tension stiffness may not be 

expected to recover when the load changes from compression to tension once crushing micro-

cracks have developed. Compression and tension recovery factors, wc and wt, are used to 

characterize the compression and tension stiffness recovery, respectively (Figure 4-4a). For 

instance, wc = 1 and wt = 0 indicate that concrete regains full compression stiffness but no 

tension stiffness is recovered. The values of wc and wt need to be calibrated during the modeling 

process to accurately describe the behavior of concrete. Bilinear hardening model is selected 

for the steel reinforcement. Kinematic hardening, which is capable of simulating the inelastic 

behavior of steel under cyclic loading is chosen for the FE models (Figure 4-4b). 

By using the concrete damaged plasticity model, the number and location of cracked 

and crushed elements, as well as the extent of tensile and compressive damage can be obtained. 
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The damage parameters, dt and dc, ranges from zero to one. A higher damage (tensile damage, 

dt, or compressive damage, dc) corresponds to a lower stress after concrete reaches tensile or 

compressive strength and a larger concrete strain. If concrete is still in the elastic range, the 

damage is equal to zero. If the damage is equal to one, the element experiences complete failure. 

A cracked element in the rest of this paper refers to an element of which both the maximum 

principle plastic strain and the tensile equivalent plastic strain are greater than zero, which 

equivalently means dt >0. 

The cyclic behavior of the FE model of the baseline column is in good agreement with 

that of the experiment (Figure 4-5). It is observed in the FE model that cracks first occur in the 

transverse direction in the plastic hinge region (the base of the column) and then continue to 

propagate as the lateral displacement increases, which is then followed by the crushing of 

concrete indicating the failure of the column. The observed performance is in full agreement 

with those reported by Ma et al. (2012). 

4.6 Performance assessment of corroded bridge columns 

After validating the FE model with the experimental tests, nonlinear time history analysis is 

performed to study the seismic performance of the bridge columns while they are experiencing 

the degradation from chloride-induced corrosion. The bridge superstructure is modeled with a 

lumped mass on top of the column. As described in the previous sections, the properties of the 

bridge columns, such as steel cross sectional area, steel and concrete material properties, and 

bond-slip relationship degrade since corrosion initiates. The extent of the degradation is 

calculated according to the equations provided in Figure 4-1 and is calculated based on the 

steel mass loss over time, which is updated as a function of time according to the procedure 

outlines in Section 4.2. The structural degradation due to corrosion is calculated at different 
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ages of the bridge. Three different ages: 0, 20 and 50 years, are selected to evaluate the seismic 

performance of the bridge columns. The mass losses of the columns at 20 and 50 years are 

11.0% and 25.3%, respectively. Pushover analysis has been conducted on the columns at the 

three ages (Figure 4-6). It can be seen that the capacity and stiffness of the column decrease 

with the age of the column, i.e. the level of corrosion. The base shear capacity of the pristine 

column is 50.4kN, and degrades by 20.2% and 42.1% as the column ages to 20 and 50 years, 

respectively. 

Three approaches are recommended in AASHTO LRFD for seismic design of bridges: 

Equivalent Static Analysis (ESA), Elastic Dynamic Analysis (EDA) and Nonlinear Time 

History Method (NTHA) (AASHTO 2011). Equivalent Static Analysis and linear Elastic 

Dynamic Analysis are appropriate for estimating the displacement demands for normal bridges 

and their individual components. The ESA is the simplest method among the three methods, 

which reduces computational cost and is easy for engineers to apply to practice. It is suitable 

for short to medium span bridges with regular configuration. For bridges where ESA does not 

provide an adequate level of sophistication to estimate the dynamic behavior, EDA should be 

used. However, EDA does not represent the inelastic behavior of earthquake resisting elements 

under strong ground motions. NTHA is the most comprehensive analysis method among the 

three methods since the effect of inelastic behavior is included. It is used for critical and 

essential bridges or normal bridges with SDC D (the Seismic Design Category D).  

To give a comprehensive analysis for the bridge components located in high seismic 

areas, both the simplest and the most comprehensive methods: ESA and NTHA are selected in 

this study to investigate the seismic performance of the intact and corroded bridge columns. 

The variation of the structural responses under different ground motions and the comparison 
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of the results between ESA and Nonlinear Time History Analysis are also presented in this 

study. 

In ESA, a uniform lateral load is used to approximate the effect of seismic loads and 

the displacement demands. For this case, a lateral load (equivalent static load) is applied to the 

top of the column to simulate the effects of seismic loads. Figure 4-7 shows the procedure of 

calculating the lateral load according to AASHTO. Three earthquake hazard levels 2% and 10% 

probability of exceedance (PE) in 50 years (Named as EQ 2% and EQ 10% hereafter), and 7% 

in 75 years (Named EQ 7%), which is the design earthquake in the current AASHTO 

specifications (AASHTO 2011), are considered in this study. With EQ 2% in 50 years, the 

equivalent static load is 50.6kN and the lateral displacement at the top of the pristine column 

is 30.2mm. With EQ 10% in 50 years, the equivalent static load is 39.7kN and the lateral 

displacement at the top of the pristine column is 7.6mm. With EQ 7% in 75 years, the 

equivalent static load is 46.4kN and the lateral displacement at the top of the pristine column 

is 12.8mm. 

To perform nonlinear time history analysis, three earthquake ground motions with 

probability of exceedance of 2% and 10% in 50 years, and 7% in 75 years are selected from 

the ground motions that are originally recorded for Los Angeles area (Somerville et al. 1997) 

(Figure 4-8a). The selected three earthquakes have the annual probability of exceedance of 

4.0ൈ10-4, 2.1ൈ10-3 and 9.7×10-4, respectively. The peak ground accelerations (PGAs) of the 

ground motions are 0.7g, 0.4g, and 0.5g, respectively. Nonlinear time history analysis is 

performed for the column at 0, 20 and 50 years under the three hazard levels EQ 2%, 7% and 

10%, respectively, to study the seismic performance of the bridge columns under different 

levels of corrosion. The maximum relative lateral displacement of the pristine column under 
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EQ 2% is 32.0mm, which is similar to the lateral displacement of 30.2mm under the equivalent 

static load of 50.6kN. The maximum relative lateral displacement of the pristine column under 

EQ 7% is 13.1mm. The maximum relative lateral displacement of the pristine column under 

EQ 10% is 6.4mm. 

Figure 4-9 presents the hysteresis loops developed at the column base. It can be 

observed that while the pristine column stays in the elastic range for the EQ 10%, the formation 

of corrosion degradation under the same earthquake results in a slight plasticity at the base. 

Comparing this with the EQ 2% that represents a major hazard level, more energy dissipation 

is observed at the base of the pristine column. Additionally with the increase in the level of 

corrosion-induced degradation, large permanent displacement could be observed that push the 

column into a new balance point. The energy dissipated during EQ 2% for the column at 0, 20 

and 50 years are calculated using a user defined code in MATLAB (2014), and are 14099J, 

11734J and 11716J, respectively. As one can see, the energy absorbed by the structure in the 

20 years and 50 years is similar however, due to the impact of corrosion, large damage to the 

concrete and the steel rebar are expected in the 50 year old column that can result in the larger 

permanent deformations. A similar trend could be observed for the column EQ 7% where the 

energy dissipated for the 20 and 50 year columns are similar but the extra flexibility in the 

older column result in larger displacement, pinching in the hysteresis loop, and also lower base 

shear capacity. 

The uncertainty associated with the variation of ground motion is taken into account 

analyzing the aged structural components under a suite of different ground motions 

representing the hazard of 7% in 75 years. Ground motions were selected from the PEER 

database to match the target spectrum. Figure 4-10 shows the spectral acceleration of the 
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selected ground motions. The variation on the maximum relative lateral displacements at the 

top of the column at different ages and under the set of ground motions are shown in Figure 4-

11. The lateral displacements at 0, 20 and 50 years follow lognormal distributions, respectively, 

with a standard deviation of 5.7mm, 6.6mm and 14.5mm. The standard deviation increases 

with the age of the column, indicating with the higher corrosion levels, the displacements are 

more scattered. This is due to the uncertainty associated with the parameters of the corroded 

columns. 

The type and extent of damage can be obtained by the FE analysis using the concrete 

damage plasticity model and bilinear hardening steel model. The type of damage in the column 

includes the cracking and crushing of concrete and the yielding of steel reinforcement. It is 

observed in the FE models that cracks first occur in the transverse direction at the bottom of 

the column then continue to propagate towards the upper portions of the column. Figure 12 

illustrates the crack propagation process of the column at 0 and 20 years under EQ 10%. 

Different time steps t = 10, 13.5, 17, 30 and 79.98 seconds are considered based on the major 

changes observed in the time history of the ground motion as shown by the time stickers on 

Figure 8a. It can be seen that the cracks first occur transversely at the bottom of the column 

(t=10s), then start to propagate towards the top (t=13.5s). After the peak accelerations, much 

more cracks are observed in the column (t=17s). Comparing the crack propagation pattern of 

the column at 0 year with the column at 20 years under EQ 10% more severe concrete tensile 

damage is observable. The crushed concrete elements also first appear at the bottom of the 

column. Yielded steel elements are mainly observed at the bottom where the plastic hinge 

forms and the highest plastic strain is observed in the longitudinal reinforcement at the plastic 

hinge (Figure 4-12). 
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To elaborate on the mechanisms that result in propagation of cracks in concrete and the 

yielding of steel, Figure 4-13 shows the percentage of damaged concrete elements and number 

of yielded steel elements in the columns with three different ages. The tensile or compressive 

damage in the concrete elements are estimated by tracking dt and dc (concrete is damaged when 

dt >0 or dc >0) and the number of yielded steel elements is estimated by tracking the plastic 

strain. It can be seen that under the severe earthquake EQ 2%, with the increase of the corrosion 

level, the concrete damage decreases and the steel damage increases. The reason is that when 

the column is corroded, both the strength and ductility of the steel are decreased and the steel 

section area is significantly reduced (by 11.0% and 25.3% in 20 and 50 years, respectively). 

The heavily corroded column has very low amount of degraded reinforcement causing a large 

amount of steel yields fast at the column base with less warning of concrete cracks propagating 

towards the top. It is observed that in the corroded columns, most of the steel at the bottom 

region yield with severe concrete damage concentrated at the base but with less cracks 

propagating towards the top. The column may result in a more brittle failure. 

Under the design earthquake EQ 7%, similarly, the percentage of concrete damage 

decreases and the percentage of steel damage increases when the level of corrosion increases. 

But both of the concrete and steel damage percentages are reduced compared to those under 

EQ 2%, since the severity of the earthquake is reduced. Under the least severe earthquake EQ 

10%, the percentage of the damaged concrete elements increases from 0 year to 20 years but 

decreases from 20 years to 50 years. Only four steel elements are yielded in the pristine column. 

The pristine column is almost still in the elastic range. This explains the reason for increase in 

number of damaged concrete elements from 0 to 20 years. The percentages of yielded steel 

elements are 4.5% and 8.3% for the column at 20 and 50 years, respectively. More yielded 
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steel elements and less cracked and crushed concrete elements in the column at 50 years 

indicates the more brittle behavior of the column with 50 years exposure to corrosive 

environment. 

4.7 Case studies representing non uniform corrosion 

Some RC columns are located in more aggressive areas, such as highway bridge columns right 

next to the road shoulders or those at the basement of a building. Often time these columns are 

exposed to an uneven amount of intrusive chemicals that can accelerate the corrosion. For 

example, for the bridge columns right next to the highway shoulders, more exposure to deicing 

ice is expected as they are closer to the splash zone of the traffic zone and more likely to get 

in touch with the salt-laden snow that snowplows pile next to them. In such situations, the 

bottom region of the column is exposed to a more surface chloride content and is more likely 

to have corrosion initiated faster and propagate in a higher speed. A similar situation could be 

observed in the columns at the basement of a building, such as at the parking garage, where 

there is a higher likelihood of salty water exposure. On the other hand in a seismic regions, 

these columns are expected to undergo large earthquake induced demand and the additional 

corrosion created at the bottom region –where most of the time the plastic hinges are exposed 

to form- will jeopardize the seismic performance of the columns and the structure as a whole.  

To investigate the behavior of the column when it experiences inconsistent levels of corrosion 

throughout its cross section and length. Two case study columns that represent the above 

situations are presented in this section. 

Case I is when both sides of the lower one third of the column height at 20 years is 

exposed to more chloride and hence experiences a higher corrosion rate (Case I-1: i = 5μA/cm2 

and Case I-2: i= 10μA/cm2) and the rest of the column is subjected to a corrosion rate of 
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2μA/cm2. Case II is when only one side of the lower one third of the column height at 20 years 

experiences a higher corrosion rate: (Case II-1: i = 5μA/cm2 and Case II-2: i = 10μA/cm2). The 

rest of the column is subjected to a corrosion rate of 2μA/cm2 (Figure 4-14). Nonlinear time 

history analysis is performed for these four cases and the results compared with the column at 

0, 20 and 50 years are shown in Figures 4-15-16. 

Under EQ 2%, in Case I-1- 20 years when both sides of the column lower section are 

under a higher corrosion rate of 5μA/cm2, the capacity of the column is reduced to 76.2% of 

the column capacity at 20 years with uniform corrosion and the maximum relative lateral 

displacement is 2.1 times as large as that of the column at 20 years with uniform exposure. If 

comparing the seismic response of the column in Case I-1 and at 50 years, it can be seen that 

the capacity in Case I-1 is similar to that in 50 years and the maximum relative lateral 

displacement in Case I-1 reaches 92.3% of that at 50 years. Therefore, it can be known that 

when the critical lower section of the column experiences a higher corrosion rate, the seismic 

capacity of the column is significantly reduced and the column undergoes a much greater 

maximum lateral displacement indicating higher extent of plasticity and damage. A similar 

trend is observed in Case I -2 when the critical lower section experiences a much higher 

corrosion rate of 10μA/cm2 at 20 years. The capacity of this 20 year old column in Case I - 2 

is lower than that of the column at 50 years. This may alert designers, inspectors and 

maintenance teams to pay special attention to the regions of the structural components that are 

expected to perform during a seismic event requiring certain protection measures or special 

designs for these locations. 

It can be known from Case II that when only one side of the column lower section 

experiences a higher corrosion rate, the seismic capacity of the column is decreased and the 
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greater maximum relative displacement indicates higher extent of plasticity and damage 

compared to the column at same age undergoing a consistent corrosion level, although the 

columns with both sides of the base are subjected to that higher corrosion rate perform even 

worse. The reason is that under both EQ 10% and 2%, in Case I-2 and II-2, many of 

longitudinal steel elements at the base already reach their ultimate strains (observed from FE 

results), the longitudinal reinforcement of the columns are expected to rupture with large areas 

of concrete spalling at the base, resulting complete failure in those columns. Even for Case I-

1 and Case II-1 under EQ 10% and 2%, the maximum normalized steel strains are very high 

(0.8-0.9). Some of longitudinal steel elements at column base experience such high strains. 

The longitudinal reinforcement of these columns are very likely to rupture. Simultaneously, 

noticed from FE results, the steel strains of the spirals at the column bases in the four cases are 

very high, compared to the columns experiencing the consistent corrosion rates at 20 and 50 

years, particularly for Case I-2 and Case II-2 under EQ 10%, as well as all the four cases under 

EQ 2%. In Case I-2 and Case II-2 under both EQ 10% and 2%, some of the spiral steel elements 

at the base already reach their ultimate strains. The bottom region of the spirals will rupture, 

leading to failure of the confinement in plastic hinge zone of the column. In Case I-1 and II-1 

under EQ 2%, some of the spiral elements at the base experience high strains. The maximum 

normalized steel strains of the spirals are 0.6 and 0.7, respectively. In Case I-1 and II-1 under 

EQ 10%, although the spiral strains at the bottom are lower than that under EQ 2%, they are 

still much higher compared to the column experiencing the uniform corrosion rate at 20 years 

or even 50 years. Therefore, it can be known that when the critical section of the column 

experiences a higher corrosion risk, the column tends to fail due to lack of confinement at the 

critical location caused by corrosion-induced reinforcement degradation. Such columns are in 
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a critical situation and special attention must be drawn to them to prevent failure during seismic 

events. 

4.8 Conclusions 

This paper provides a multi-threat approach that assesses the lifetime performance of RC 

columns under both earthquake and chloride-induced corrosion. The corrosion effects such as 

steel area, strength and ductility reduction, concrete degradation, and bond deterioration have 

been implemented into the developed 3D FE models and updated according to different ages 

of the RC column. The capacity and stiffness of the column at different ages are evaluated and 

found to be significantly reduced by the level of corrosion. The seismic performance of the 

columns at 0, 20 and 50 years under three different hazard levels is investigated. The type, 

location, and extent of damage in the column at different corrosion levels have been identified. 

Crack propagation patterns in the concrete cover are visualized. Furthermore, the seismic 

performance of the columns that experience a higher corrosion risk on one or both sides of the 

critical bottom region has also been studied. It can be concluded that a much higher corrosion 

risk at the critical lower section of the column can dramatically compromise the seismic 

performance of the column, leading to complete failure under severe earthquakes. The 

longitudinal reinforcement at the bottom of these columns is very likely to rupture together 

with very high strains in the spirals and large areas of concrete spalling at the bottom regions. 

Such columns tend to fail due to lack of confinement at the critical location caused by 

corrosion-induced reinforcement degradation. These columns could perform much worse than 

a column undergoing a uniform corrosion rate at a much older age and must be drawn special 

attention to in order to prevent failure during seismic events. The findings of this study 

highlight the necessity of studying the combined effects of earthquake and corrosion in seismic 
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prone regions. The proposed framework is capable of predicting the seismic performance of 

RC columns with different corrosion levels at any age during their lifecycles and providing the 

details of damage extent, type and region, therefore, will help engineers improve their designs, 

identify necessary test regions, and comprehensive test plans, and optimize the rehabilitation 

strategies for RC structures in multi-threat areas. 
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Figure 4-1.  Procedure to estimating the deteriorating effects of different mechanisms. 
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(a) (b) 

Steel properties Longitudinal reinforcement Transverse reinforcement
Diameter (mm) 16 8 

Yield strength (MPa) 373.2 327 
Ultimate strength (MPa) 572.3 510.7 

(c) 

Figure 4-2.  (a) Structural details of the column from the experiment (all dimensions in 

mm); (b) cyclic loading portfolio; (c) reinforced properties of the column. 

    

Figure 4-3.  FE model generated based on characteristics of the column in the 

experiment. 
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(a)                                                                         (b) 

Figure 4-4.  Cyclic behaviors of (a) concrete and (b) steel (ABAQUS 2012). 

 

Figure 4-5.  Comparison of hysteresis loops developed in experiment and 3D finite 

element model for the baseline column. 
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Figure 4-6.  Pushover analysis of the bridge columns at 0, 20 and 50 years. 

 

 

Figure 4-7.  Procedures for the Equivalent Static Analysis (ESA).  
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                                     (a)                                                                      (b) 

Figure 4-8.  (a) Time history and (b) Spectral acceleration of ground motions with 2% 

and 10% probability of exceedance in 50 years and 7% probability of exceedance in 75 

years. 
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(a) 

 
(b) 

 
(c) 

Figure 4-9.  Base shear vs. displacement hysteresis loops of columns under: ground 

motions with (a) 2% PE in 50 years; (b) 7% PE in 75 years and (c) 10% PE in 50 years. 
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Figure 4-10.  Spectral acceleration of a suite of ground motions with 7% probability of 

exceedance in 75 years. 

 

Figure 4-11.  Maximum relative lateral displacements of the column under the ground 

motions with 7% PE in 75 years. 
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  t=10s                     t=13.5s                    t=17s                     t=30s                    t=79.98s 

Figure 4-12.  Crack propagation patterns and steel plastic strains of the column at (top) 

0 year and (bottom) 20 years under EQ 10%. 
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(a) 

 
(b) 

 
(c) 

Figure 4-13.  Extent of damage of the columns under: (a) EQ 2%; (b) EQ 7%; (c) EQ 

10%. 
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                                           Case I                                                                       Case II 

Figure 4-14.  Schematic representation of two case study columns with non-uniform 

corrosion. 
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(a) Case I 

 

(b) Case II 

Figure 4-15.  Base shear versus displacement hysteresis loops of columns under EQ 2% 

for the two case study columns with non-uniform corrosion. 
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(a) Case I 

 

(b) Case II 

Figure 4-16.  Base shear versus displacement hysteresis loops of columns under EQ 

10% for the two case study columns with non-uniform corrosion. 
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CHAPTER 5. STRUCTURAL PERFORMANCE OF 

DETERIORATING REINFORCED CONCRETE COLUMNS 

UNDER MULTIPLE EARTHQUAKE EVENTS 

A paper submitted to the journal of Bridge Engineering (ASCE) 

Zhen Cui, Alice Alipour and Behrouz Shafei 

5.1 Abstract 

This paper studies the life cycle performance of reinforced concrete (RC) columns that are 

subjected to multiple seismic events at different time periods while they are continuously 

subjected to chloride-induced corrosion. The adverse effects of corrosion have been 

implemented into the proposed three dimensional nonlinear finite element (FE) model and the 

extent of structural degradation is updated based on the age of the column. A set of case 

scenarios have been developed to investigate the extent of damage when the column 

experiences two earthquake events with different levels at various time periods during its 

lifetime. The impact of the first earthquake-induced damage on the corrosion process has been 

taken into account. The increased corrosion rate after the first earthquake is used to predict the 

degradation of the damaged RC column under future corrosion and more realistic predictions 

for the performance of the column after the future earthquake are obtained. The developed 

framework is able to quantify the effect of corrosion on the seismic capacity of RC structures 

and the extent of damage after each earthquake when the structures experience multiple seismic 

events. 

Keywords: multiple seismic events, chloride-induced corrosion, reinforced concrete, finite 

element analysis, multi-hazard 
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5.2 Introduction 

Reinforced concrete (RC) structures are usually subjected to various environmental stressors 

and natural hazards during their life cycle. Structures are aging and deteriorating under 

environmental stressors, such as the corrosion induced by airborne sea salt or deicing salt, 

which may significantly reduce the capacity and durability of RC structures. In addition to the 

deterioration, structures may be exposed to one or more natural hazards depending on their 

locations. For instance, in high seismic risk areas, structures may undergo different levels of 

earthquakes during their life cycle. This will create a condition where some of the remaining 

damage from the previous minor earthquakes in addition to weakening the structure, can create 

a pathway for the chloride ions to intrude even faster and result in more deterioration by the 

time the next earthquake occurs. 

Extensive research has been conducted for the corrosion induced by chloride ions 

(Cheung et al. 2009, Shafei et al. 2012, O’Connor and Kenshel 2013, Shafei and Alipour 2015, 

Hu et al. 2016), as well as the corrosion effects on structural performance (Rodriguez et al. 

1997, Coronelli and Gambarova 2004, Cui and Alipour 2014). There have been a number of 

experimental studies focused on seismic behaviors of corroded members (Ou et al. 2012, Meda 

et al. 2014, Guo et al. 2015). Numerical studies on seismic response of corroded structures 

includes Alipour (2010), Alipour et al. (2011), Ou et al. (2013), Alipour and Shafei (2014), 

Yalciner et al. (2015). Although the research has captured the residual capacity of the corroded 

structures under the earthquakes, all of them were focused on the behaviors of the structures 

experiencing one earthquake at a time without considering the impact of the earthquake-

induced damage on the progress of the corrosion in future or its performance under other future 

earthquakes. This is a likely scenario in seismic prone regions that requires attention. This 
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paper aims to study the seismic performance of corroded RC columns subjected to multiple 

seismic events that occur at different stages. A set of case scenarios including two earthquakes 

with different hazard levels, variant corrosion rates due to previous earthquake-induced 

damage, as well as multiple column ages are developed and applied to the generated 3D 

nonlinear FE model. This FE model is validated by the pervious experimental tests and is 

capable of including the corrosion effects and updating the corresponding structural 

degradation as a function of the column age. Moreover, the region and type of damage are 

identified, and the extent of damage are quantified. The residual damage from the first 

earthquake is considered as a new state condition for the structure that carries over throughout 

the life cycle of the structure until the second earthquake occurs. The details of local damages 

as well as frequencies of the column before and after each earthquake are obtained. 

This study provides a comprehensive approach to evaluate the lifetime performance of 

corroded RC members under multiple seismic events. The details of damage before and after 

each seismic event can be captured. The outcome of this research will help engineers and 

designers predict the performance of the structures in multiple earthquake events, as well as 

help inspectors identify damage regions, make necessary test plans, and optimize rehabilitation 

strategies for RC structures. 

The remainder of the paper is structured as follows: i) chloride-induced corrosion 

initiation and propagation, ii) effects of corrosion, iii) effect of earthquake-induced damage on 

corrosion rate, iv) FE models and case study scenarios, v) life cycle performance of corroded 

RC columns subjected to two earthquake events, and vi) conclusions. 
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5.3 Chloride-induced corrosion initiation and propagation 

The corrosion of reinforcement is one of the main causes of deterioration of RC structures 

(Cairns et al. 2005, Val and Chernin 2009, Apostolopoulos et al. 2013). In coastal areas with 

airborne sea salt particles or harsh winter regions with high exposure to deicing salts, chloride-

induced corrosion is the dominant mechanism. Chloride ions gradually diffuse through 

concrete towards reinforcing steel. When chloride concentration at the steel surface reaches its 

critical level, corrosion initiates. Then the steel is consumed and rust is produced at the 

interface of steel and concrete. Since the volume of the produced rust is higher than the 

consumed steel in the process, internal pressure is induced on the surrounding concrete, 

causing formation of concrete cracks and finally leading to spalling of concrete cover (Figure 

5-1). 

The extent of structural degradation due to chloride-induced corrosion during its 

lifecycle can be calculated using Faraday’s Law, which relates steel mass loss over time to 

current density. 

௦௧ሺtሻܯ ൌ
ூ௧

௭ி
                                                                                                                          

(5-1) 

where m is the atomic mass of iron (56g for Fe), F is Faraday’s constant, which is 96500 A∙s, 

z is the ionic charge (for instance, 2 for Fe→Fe2++2e-), t is the time after corrosion initiation 

(s), and I is the current (I = asicorr (A), as is the surface area of the steel bar, icorr is the current 

density (A/cm2)). For a unit length of a rebar, as = πd. Thus, the mass loss of steel per unit 

length of a rebar for a time step after corrosion initiation, Δt (s), is calculated as: 

௦௧ሺtሻܯ ൌ
గௗೝሺ௧ሻ

௭ி
݅ݐ߂ ൌ 2.894 ൈ 10ିସ݅݀ߨሺݐሻ(2-5)                                                    ݐ߂ 
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where dr is the residual rebar diameter (cm). The density of steel is taken as 7.8g/cm3. Hence, 

the volume change of consumed steel per unit length can be calculated as follows: 

௦௧ሺtሻܣ ൌ
ெೞሺ௧ሻ

ఘೞ
ൌ 3.709 ൈ 10ିହ݅݀ߨሺݐሻ(3-5)                                                                    ݐ߂ 

The residual diameter of rebar after each time step can be determined as 

݀ሺݐሻ ൌ ට݀ଶ െ ସೞሺ௧ሻ

గ
                                                                                                           (5-4) 

Therefore, the residual rebar diameter at a certain time step can be calculated using the last two 

above equations once the corrosion rate is determined. The mass loss of steel due to corrosion 

can be updated over time. 

5.4 Effects of corrosion 

The effects of corrosion on steel reinforcement includes reduction of steel cross sectional area, 

reduction of steel yield and ultimate strengths, as well as reduction of steel ultimate strain.  The 

cross sectional area reduction of the steel bar can be calculated as follows (Berto et al. 2008): 

௦௧ܣ ൌ గሺௗିఒ್௫್ሻమ

ସ
                                                                                                                    (5-5) 

where Ar
st is the residual cross sectional area of a steel bar, d is the original diameter of a steel 

bar, xb is the radius reduction of the bar, and λb takes into account the possibility of a one-side 

or two-side corrosion attack penetration (For uniform corrosion, λb =1). 

The residual yield and ultimate strengths of corroded reinforcement can be estimated 

using the following empirical formulas that are based on experimental data (Cairns et al. 2005): 

௬݂
 ൌ ሺ1 െ ଵሻߟ0.015 ௬݂

                                                                                                     (5-6) 

௨݂
 ൌ ሺ1 െ ଵሻߟ0.015 ௨݂

                                                                                                     (5-7) 

where fy
r and fu

r are the residual yield and ultimate strengths of corroded reinforcement, 

respectively, fy
0 and fu

0 are the yield and ultimate strengths of original reinforcement, 



www.manaraa.com

161 
 

respectively,  and η100 is the percentage of steel mass loss, calculated from the consumed steel 

mass per unit length divided by the initial steel mass per unit length (η100=Mst/M0×100). 

The ultimate strain of corroded reinforcement is calculated empirically as follows: 

௦௨ߝ ൌ ሺ1 െ ௦௨ߝଵሻߟ0.039                                                                                                    (5-8) 

where εr
su is the ultimate strain of corroded reinforcement and ε0

su is the ultimate strain of 

original reinforcement. The above formulas are consistent with the findings from more recent 

experimental tests (Kashani et al. 2013). Figure 5-2(a) illustrates the constitutive models of 

pristine and corroded steel. 

The corrosion effect on concrete can be considered by the formation of cracks and 

degradation of compressive strength in concrete cover, as well as using a brittle post-peak 

behavior in the compressive constitutive model of concrete (Coronelli and Gambarova 2004). 

The reduced compressive strength of concrete can be calculated using the following equations: 

݂
 ൌ ᇲ

ଵାೃഄೌ
ഄ

       and           ߝ ൌ
భ
బ
െ 1,         ܾଵ ൌ ܾ   (9-5)             ݓ݊

where εc is concrete strain at the compressive strength, f’c, εa is the average tensile strain in 

cracked concrete perpendicular to the direction of the applied compression, R is a coefficient 

related to the roughness and diameter of reinforcement (R = 0.1), b0 is the original width of the 

cross section, b1 is the increased width due to corrosion cracks, n is the total number of 

reinforcement in the top layer, and w is the total crack width which can be calculated as follows 

(Molina et al. 1993): 

ݓ ൌ ∑ ݓ ൌ ߣሺݔߨ2 െ 1ሻ                                                                                                  (5-10) 

where wi is each single crack width and λ is the volumetric ratio, which varies depending on 

the composition of corrosion products. Figure 5-2(b) shows the constitute models of pristine 

and degraded concrete. 
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5.5 Crack width and effect of earthquake-induced damage on corrosion 

rate 

Corrosion of reinforcement leads to steel section loss and rust production, which induces 

cracking of the concrete cover. The crack widening and propagation in the concrete cover will 

facilitate the intrusion of chloride ions into concrete. Several research projects have been 

conducted on the relations between the corrosion-induced crack width and the corrosion degree 

which is often expressed in terms of steel mass loss per unit length or corrosion penetration 

(rebar radius reduction) (Vidal et al. 2004, Val et al. 2009, Andrade et al. 2010, Zhang et al. 

2010, Xia and Jin 2014). It has been concluded that the average crack widths due to corrosion 

increase with the steel cross sectional loss. Andrade et al. (2010) have developed equations for 

calculating corrosion-induced crack widths of the concrete cover in natural environments based 

on experimental test results: 

ݓ ൌ ݇ሺ௫್

ሻ                                                                                                                            (5-11) 

where w is the crack width, r is the original radius of the reinforcement, xb is the corrosion 

penetration, i.e., radius reduction, and k is the factor, the value of which is derived from 

experimental results, taken as 35.5. The time-dependent corrosion penetration at time t (years) 

after corrosion initiation can be calculated as (DuraCrete 2000): 

ݔ ൌ 0.0115݅(12-5)                                                                                                              ݐ 

where icorr is the corrosion rate (µA/cm2). Substituting Equation 5-12 into Equation 5-11, the 

time-dependent crack width can be related to the corrosion rate and calculated as: 

ݓ ൌ .ଵଵହೝೝ


 (13-5)                                                                                                                 ݐ

After earthquake occurs, the reinforced concrete columns may experience certain 

damage due to seismic loadings, such as the cracking of concrete cover. The earthquake-
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induced cracks will lead to the increase of corrosion rate. Otieno et al. (2016b) proposed a 

predictive model for chloride-induced corrosion rate that takes into account the effect of crack 

width based on a series of experimental test results (Otieno et al. 2016a). The derived predictive 

models of corrosion rate are:  

݅ ൌ 5.18݁.ଵൈଵ
భబ
ሺ
௪
ሻି.ଽሺൈଵ

భబሻషబ.యఱ    for lab specimens                                   (5-14) 

݅ ൌ 0.64݁.ൈଵ
భబ
ሺ
௪
ሻି.ଶଵ

బ.బమವൈభబభబ        for field specimens                                 (5-15) 

where Dc is the chloride diffusion coefficient and c is the concrete cover thickness. 

5.6 FE modeling and case study scenarios 

Finite element analysis is conducted to investigate the structural performance of RC columns. 

Laboratory data from the tests that Ma et al. (2012) conducted have been used to validate the 

results generated by the FE models. In these tests, RC circular columns with different extents 

of corrosion were tested under combined cyclic lateral loadings and constant axial loading. 

Each column is 260mm in diameter and 1000mm in height with a 1300mm×360mm×400mm 

stub (Figure 5-3a). The clear concrete cover to the spiral stirrups is 30mm. The longitudinal 

reinforcement in both column and stub is 16mm in diameter. The spirals are 8mm in diameter 

with a spacing of 100mm and the stirrups in the stub are 8mm in diameter. The 28-day 

compressive strength of concrete is 32.4MPa. The yield and ultimate strengths of longitudinal 

reinforcement are 373.2 and 572.3MPa, respectively. The yield and ultimate strengths of 

transverse reinforcement in the column and stub are 327 and 510.7MPa, respectively. 

The generated FE model is shown in Figure 5-3(b). 3D eight node solid elements are 

used to model the column concrete and 3D two node truss elements are used to model the steel 

reinforcement. Damaged plasticity model is selected to model the concrete properties. This 

model assumes that the main failure mechanisms are tensile cracking and compressive 
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crushing. It takes into account the degradation of the elastic stiffness induced by plastic 

straining both in tension and compression (ABAQUS 2012). The reduction of the elastic 

modulus is expressed in terms of the degradation variable, d1 (dc or dt). 

ܧ ൌ ሺ1 െ ݀ଵሻܧ                                                                                                                   (5-16) 

where E0 is the initial modulus of concrete and d1 is the damage variable. dc and dt are the 

damage variables of concrete in compression and tension, respectively. Bilinear kinematic 

hardening model is selected for the steel reinforcement. Great agreement is observed between 

experimental and numerical results (Figure 5-3c). More details on comparing the results could 

be found in Cui and Alipour (2016). 

With the results of the FE model validated, similar approach is used to generate the FE 

models of the full scale RC columns in this paper. The columns here are a part of the RC 

bridges located in the Los Angeles area and satisfy the current seismic design requirements. 

The bridges have two equal spans of 30m. The total concrete cross-section of deck is 

approximately 12m2. The bridges have only one interior bent with two identical circular 

columns. Each column is 1.6m in diameter with a concrete cover of 50mm and 10m in height 

with a 3m×3m×2m foundation. The compressive strength of concrete is 32.4MPa. The 

diameter of longitudinal reinforcement in the column is 62mm. The stirrups of the column are 

19mm in diameter with a spacing of 100mm. Square hoops in both directions of the foundation 

are 57mm in diameter with a spacing of 150mm. The yield and ultimate strengths of steel 

reinforcement are 475MPa and 655MPa, respectively. The mass of bridge superstructure above 

the column is simplified as lumped on top of the column. The top of column has only one 

degree of freedom in the horizontal direction to represent the interaction between the column 

and the superstructure of the bridge (Figure 5-4).  
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The corrosion rate of 5.0μA/cm2, which is within the normal range of corrosion rate 

(Jamali et al. 2013), is considered in this study. The properties of the columns, such as steel 

cross sectional area, steel and concrete material properties, and bond-slip relationship degrade 

after corrosion initiation. The extent of the corrosion-induced degradation is calculated 

according to the equations provided in the effects of corrosion section and is calculated based 

on the steel mass loss over time, which is updated as a function of time according to the 

chloride-induced corrosion initiation and propagation section. The structural degradation due 

to corrosion is calculated at 10 year time intervals. Table 5-1 shows the steel mass loss in 10 

year time intervals within the design life of the RC column. The level of deterioration increases 

with time. The degraded properties of the column are updated accordingly. Pushover analysis 

is conducted for the columns at 0, 10, 20, 30, 40, 50, 60 and 70 years (Figure 5-5). As corrosion 

level increases with the age of the column, both capacity and stiffness of the column will reduce. 

The maximum base shear capacities of the columns from 10 to 70 years reduces by 7.9% to 

31.5% respectively. 

In order to study the seismic performance of corroded columns under multiple 

earthquake events, a set of case study scenarios are defined. In each case scenario, the column 

experiences two earthquakes at two different stages of its life cycle. At the first stage, the 

column experiences the first earthquake. The region, type and extent of damage in the column 

are recorded after this first stage. Then the residual damage including plastic strain and 

deformation, as well as concrete cracking and crushing from the first analysis is used to 

estimate the new corrosion risk to the column. The extra cracks introduced by the first 

earthquake will make the column more vulnerable to the intrusion of chloride ions, increasing 

the rate of corrosion. The cumulative damage from the first earthquake and the faster corrosion 
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process are used as an initial condition for the column undergoing the second earthquake event. 

The structural degradation of the column under the increased corrosion rate will be updated as 

a function of the column age when it experiences the second earthquake. The damage after the 

second earthquake will then be recorded. Figure 6 details the procedure for this analysis. 

There are three different approaches for seismic design of bridges: Equivalent Static 

Analysis (ESA), Elastic Dynamic Analysis (EDA) and Nonlinear Time History Method 

(AASHTO-LRFD 2012). Equivalent Static Analysis and linear Elastic Dynamic Analysis are 

appropriate for estimating the displacement demands for normal bridges and their individual 

components. The ESA can be used for short to medium span bridges with regular configuration. 

For long bridges or where ESA does not provide an adequate level of sophistication to estimate 

the dynamic behavior, EDA should be used. Nonlinear Time History Method is the most 

comprehensive but the most complex analysis method among the three methods. It is best used 

for bridges with SDC D (the Seismic Design Category D) or seismically isolated bridges with 

long periods or large damping ratios. Since the bridge used in this study is a typical bridge with 

short spans and regular configuration that represents many bridges constructed in the United 

States, Equivalent Static Analysis will be used to investigate the seismic performance of the 

intact and corroded bridge columns. This method also   reduces computational cost and is easier 

for engineers to apply in practice. The ESA utilizes a uniform lateral load to approximate the 

effect of seismic loads. In this study, a lateral load (equivalent static load) is applied to the top 

of the column to simulate the effect of seismic loads. Figure 5-5 shows the procedure to 

calculate the equivalent static load for different earthquake levels.  

Two earthquake hazard levels, 2% and 10% probability of exceedance (PE) in 50 years, 

are considered in this study. The annual probabilities of exceedance of the earthquakes with 
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PE of 2% and 10% in 50 years are 4.0×10-4 and 2.1×10-3, respectively. Eight column ages of 

0, 10, 20, 30, 40, 50, 60 and 70 years are considered in this study and they are symbolized as 

Y0, Y10, Y20, Y30, Y40, Y50, Y60 and Y70, respectively. As shown in Figure 5-7, the column 

in the corrosive environment is continuously subjected to chloride-induced corrosion with a 

corrosion rate of 5.0μA/cm2 (icorr,1). At the time when the first earthquake (EQ 1) occurs, the 

crack width of the column due to corrosion (w1) can be calculated using Equation 5-13. The 

first earthquake causes certain damage including cracks in the concrete cover, the width of 

which can be obtained by the FE results using the maximum principle strain of the column. 

Then the total crack width (w2) after the first earthquake can be estimated by adding the 

earthquake-induced crack width to the corrosion-induced crack width at the time when the first 

earthquake occurs. Based on Otieno et al. (2016b), the increased crack width (w2) will lead to 

faster corrosion progress. The increased corrosion rate (icorr,2) due to the first earthquake-

induced damage can be calculated using Equation 5-15. Then the damaged column that carries 

the residual damage from the first earthquake will continue deteriorating under the increased 

corrosion rate (icorr,2) until the second earthquake (EQ 2) occurs. The time-dependent 

degradation of the damaged column is calculated based on the increased corrosion rate (icorr,2). 

Three specific case scenarios are studied here to illustrate the application of the 

developed FE framework and to investigate the lifetime performance of the RC column under 

multiple seismic events while the columns are continuously subjected to chloride-induced 

corrosion. The three cases are 0Y30Y (E10Y0E2Y30), 20Y50Y (E10Y20E2Y50) and 40Y70Y 

(E10Y40E2Y70). For all the three cases, the column will first experience a less severe 

earthquake E10 that results in minor damage. Minor damage here follows the definition by 

HAZUS-MH (2012) where it is defined as: minor cracking or spalling, damage requires no 
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more than cosmetic repair. Then the column will experience a more severe earthquake E2. The 

case 20Y50Y (E10Y20E2Y50) represents that the column is under corrosion for 20 years with 

a corrosion rate of 5.0μA/cm2 (icorr,1). Then the first earthquake E10 occurs. After that, the 

column deteriorates under an increased corrosion rate of 7.3μA/cm2 until the second 

earthquake occurs at 50 years. The corrosion-induced crack width (w1) of the column at 20 

years before the first earthquake is 0.7mm and the total crack width (w2) including earthquake 

impact after the first earthquake is 1.6mm. The increased corrosion rate after the first 

earthquake is 7.3μA/cm2 (icorr,2). For the case 40Y70Y (E10Y40E2Y70), the column is under 

corrosion for 40 years with a corrosion rate of 5.0μA/cm2 (icorr,1) until the first earthquake E10 

occurs. The corrosion-induced crack width (w1) of the column at 40 years before the first 

earthquake is 1.4mm and the total crack width (w2) including earthquake impact after the first 

earthquake is 2.5mm. Then the column deteriorates under an increased corrosion rate of 

8.0μA/cm2 (icorr,2) until the second earthquake occurs at 70 years. 

5.7 Performance of RC columns under the threat scenarios  

The performance of the columns under the three different threat scenarios are presented in this 

section. Figure 5-8 shows the extent of damage for all of the three cases. In order to investigate 

the impact of the damage from the first earthquake on the corrosion progress afterwards, as 

well as the impact of the increased corrosion rate on the damage after the second earthquake, 

the results from another set of the three cases with constant corrosion rate before and after the 

first earthquake also presents in Figure 5-8. The types of damage in the column includes 

concrete and steel damage. The concrete damage contains the damage in tension (dt) and in 

compression (dc) (see Equation 5-16). The steel damage is expressed in terms of number of the 

elements that experience plastic strain. The percentage of damage in Figure 5-8 is the number 
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of the damaged concrete elements to the total number of the concrete elements. The number of 

yielded steel is the number of steel elements with a non-zero plastic strain. The pink regions 

of the bars show the damage extent after the first earthquake. The blue regions of the bars show 

the damage extent solely from the second earthquake. The labels above the bars show the total 

damage extent after the two earthquakes.  

It can be seen from Figure 5-8 that under both constant corrosion rate and variant 

corrosion rate (considering the increase of corrosion rate after the first earthquake due to 

earthquake-induced damage), the total damage extent is increasing from the case 0Y30Y to 

20Y50Y and from 20Y50Y to 40Y70Y, although the time interval between the first and second 

earthquakes for all of the cases is 30 years. This indicates the column experiences more damage 

if both the two earthquakes occurs later when the column suffers from higher level of corrosion. 

After the first earthquake, the percentages of concrete damage for all the three cases are 

relatively low, ranging from 14.5% to 35.1%  of tensile damage and 10.3% to 32.3% of 

compressive damage, and no steel yielding occurs in the column. The column only experiences 

minor damage after the first earthquake for all the cases and no repair is required. However, 

after the second more severe earthquake, both concrete and steel damage is significantly 

increased. With the variant corrosion rate, the total percentages of concrete tensile damage 

after two earthquakes increase by 2.2% and 70.6%, compared to the ones with the constant 

corrosion rate for the case 20Y50Y and 40Y70Y, respectively. The total percentages of steel 

damage after two earthquakes under the variant corrosion rate are 2.7% and 17.6% for the 

cases 20Y50Y and 40Y70Y, respectively, whereas under the constant corrosion rate, the total 

percentages of steel damage are 1.1% and 3.4% for the cases 20Y50Y and 40Y70Y, 

respectively. It is noticed that for the case 40Y70Y, both concrete and steel damage 
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dramatically increased after the second earthquake under the variant corrosion rate case. The 

column experiences complete failure. But under the constant corrosion rate case without 

considering the faster corrosion process due to the cracks induced by the first earthquake, the 

column experiences extensive damage rather than complete failure.  Therefore, it can be known 

that taking into account the effect of the first earthquake-induced damage on the corrosion 

process, the damage extent of the column will increase, particularly for the column under a 

higher corrosion level. Ignoring the impact of the damage caused by the minor previous 

earthquakes on the corrosion progress may significantly underestimate the damage extent 

under the future earthquake, thus gives unrealistic predictions for the performance of the 

column. 

The corrosion level expressed in terms of the steel mass loss percentage under both 

constant and variant corrosion rates are shown in Figure 5-9. It can be seen that consdering the 

increase of corrosion rate due to the previous earthquake-induced damage will increase the 

corrosion level by 21.7% for the case 20Y50Y, and 14.9% for the case 40Y70Y. Figure 5-9 

shows that the increase in corrosion rate will slow down as the mass loss percentage increases. 

This could be attributed to the fact that the corrosion process slows down as rust layer thickens 

which will increase the difussion distance of ionic iron. 

Figure 5-10 shows the natural frequency of the column before and after each earthquake 

for both constant and variant corrosion rates. It can be seen that the frequencies of the intact 

and corroded columns before experiencing the first earthquake are relatively similar. However, 

the frequencies of the columns drop significantly after the first earthquake and are further 

reduced after the second earthquake. Under the variant corrosion rate, the frequencies of the 

columns after the second earthquake drop more than those under the constant corrosion rate 
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(4.7% more for the case Y20Y50 and 10.7% more for the case Y40Y70), indicating a higher 

extent of damage of the column due to considering the impact of the first earthquake. This also 

highlights the importance of including the impact of the previous earthquake-induced damage 

on the corrosion process for providing realistic predictions of the column performance under 

future earthquakes. 

5.8 Conclusions 

This paper studies the lifecycle performance of deteriorating RC columns subjected to multiple 

seismic events. The effects of chloride-induced corrosion including steel area reduction, steel 

and concrete property degradation has been analyzed and incorporated into a three dimensional 

nonlinear finite element framework. The extent of structural degradation has been updated as 

a function of the age of the structural components and is based on a more realistic estimation 

of corrosion process. The FE modeling technique has been validated through previous 

experimental tests.  Real scale FE models of the columns from 0 to 70 years have been 

generated. The capacities of the columns have been evaluated through nonlinear pushover 

analysis and found to be greatly influenced by the age of the column, i.e. the level of corrosion. 

The strength and stiffness drop significantly as corrosion level increases. A set of case study 

scenarios containing two earthquakes with different PEs in 50 years occurring at different ages 

of the column have been developed to investigate the lifetime performance of the columns 

under both corrosion and multiple earthquakes. The effect of the first earthquake-induced 

damage on the corrosion progress has been taken into consideration. The increased corrosion 

rate after the first earthquake is utilized to predict the further degradation of the damaged 

column under future corrosion mechanisms and more realistic predictions for the performance 

of the columns after the future earthquake are obtained. The extent of both concrete and steel 
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damage of the column from each earthquake and the extent of the total damage after the two 

earthquakes have been quantified. The frequencies of the column before the first earthquake 

and the reduced frequencies after each earthquake have also been obtained. It is found in this 

study that taking into account the impact of the previous earthquake-induced damage on the 

corrosion process, the column damage extent after future earthuqakes will increase, 

particularly for the columns under high corrosion levels. Ignoring the influence of the damage 

caused from the previous earthquake on the corrosion progress may significantly underestimate 

the damage extent under future earthquakes, giving unrealistic predictions for the lifetime 

performance of the columns. The results of this study emphasize the necessity of considering 

the combined effects of earthquake and corrosion to predict the structural performance under 

multiple seismic events. The developed framework is capable of predicting the damage extent 

after each earthquake when multiple earthquakes occur at any time periods during the service 

life of the structures. The outcome of the research will help engineers improve their design 

under multiple earthquakes and multi-hazards, help inspectors identify damage extent and 

make comprehensive test plans, as well as help decision makers optimize rehabilitation 

strategies for RC structures in multi-hazard areas. 
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Table 5-1.  Steel mass loss of bridge columns at 10 year time intervals (icorr=5μA/cm2) 

t (year) 0 10 20 30 40 50 60 70 
Steel mass loss 0 4.0% 7.8% 11.5% 15.0% 18.4% 21.7% 24.8% 
 

 

Figure 5-1. Chloride-induced corrosion process (Alipour et al 2013) 

 

 

(a)                                                                                 (b) 

Figure 5-2. Constitutive models of (a) steel and (b) concrete in pristine and corroded 

conditions 
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(a) (b) 

 

(c) 

Figure 5-3. (a) Details of geometry (in mm); (b) FE models; (c) Comparison between the test 

and FE results 
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(a)                                              (b) 

Figure 5-4. FE model of (a) the real scale bridge column; and (b) its steel cage 

 

Figure 5-5.  Results of pushover analysis for columns from 0 to 70 years 
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Figure 5-6.  Calculation procedure of equivalent static load 

 

Figure 5-7. Case scenarios considered in this study 
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(a) 

 

(b) 

Figure 5-8.  Damage extent of the column under the case scenarios: (a) Variant corrosion 

rate; (b) Constant corrosion rate 
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(a) 

 

(b) 

Figure 5-9.  Comparison of steel mass loss percentage for constant and variant corrosion 

rates: (a) The case 20Y50Y; (b) The case 40Y70Y 

Mass loss

Age 

7.8%

20 years                                     50 years

22.4%

18.4%

Mass loss

Age 40 years  70 years

15.0%

24.8%

28.5%



www.manaraa.com

184 
 

 

Figure 5-10.  Frequencies of the column before and after the first and second earthquakes 
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CHAPTER 6. CONCLUSIONS AND CONTRIBUTIONS 

This study has focused on the chloride-induced concrete crack initiation and propagation in 

reinforced concrete structures, as well as the lifetime performance of RC structures under the 

environmental stressors (i.e., corrosion) and natural hazard (earthquakes). 

Important analytical models for corrosion-induced crack initiation of concrete cover 

under both uniform and pitting corrosion have been critically reviewed. For the purpose of 

comparing predictive models, the crack initiation time is calculated using three selected 

analytical models for five experimental tests. The predicted crack initiation time is then 

compared with their corresponding experimental observed time to crack initiation, resulting in 

a conclusion that predictive models are developed based on the results from a particular 

experimental test and normally provide more reasonable results for the situation that is similar 

to the test conditions. The value of the predicted time is highly dependent on the value of the 

input parameters, such as types of corrosion products and the thickness of ITZ. 3D FE models 

have been proposed and validated to study the effect of different parameters on crack initiation 

time. It can be concluded that the composition of corrosion products and corrosion mechanism 

(uniform or pitting corrosion) can significantly affect the crack initiation time. The crack 

initiation time varies dramatically with the thickness of ITZ, and the corrosion rate. Other 

factors which can also influence the crack initiation time are the geometrical parameters: 

concrete cover depth, rebar diameter and spacing, as well as material properties of concrete. 

An effective approach to increase the crack initiation time is to increase the depth of concrete 

cover. In order to study the effect of different parameters on the crack propagation pattern 

throughout concrete cover, a sensitivity analysis is conducted using the FE analysis. The crack 
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propagation patterns for different cover depths in different time periods, as well as the crack 

patterns for different cover depth to bar diameter ratios have been analyzed. 

The adverse effects of corrosion in reinforcement on structural behavior of RC beams 

includes reduction of steel cross sectional area, change of steel and concrete properties, as well 

as deterioration of bond. All the corrosion effects have been studied with a particular attention 

drawn to bond loss. The bond strength increases initially with the increase of corrosion under 

low level of corrosion and decrease consistently with further increase of corrosion. Models for 

residual bond strength in corroded RC beams have been presented and compared. In order to 

obtain the structural behavior of corroded RC beams, nonlinear FE models which are able to 

take into account all the corrosion effects are developed and verified with the available 

experiment data. The FE models adopted damaged plasticity model for concrete elements and 

utilize nonlinear spring elements to simulate the bond behavior between steel and concrete. 

The results from the FE analysis clearly show that corrosion influences the strength and 

ductility of a structure at ultimate condition. For instance, the load carrying capacity of Type 

11 beams was reduced by 21.4% - 35.3%, depending on the corrosion levels. The corrosion 

may also cause excessive cracking and deflection, which lead to serviceability failure. The FE 

models provide a good prediction of the damage process of reinforced concrete structures 

subjected to corrosion. 

The lifetime performance of RC columns under both earthquake and chloride-induced 

corrosion has also been studied. All the degrading effect of corrosion have been implemented 

into the developed 3D FE models and updated according to different ages of the column. The 

capacity and stiffness of the column at different ages are evaluated and found to be significantly 

reduced by the age of the column, i.e., the level of corrosion. Nonlinear time history analysis 
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has been performed for the column at three different ages: 0, 20 and 50 years. The seismic 

performance of the pristine and corroded columns under three different hazard levels has been 

investigated. The type, region and extent of damage in the column at different corrosion levels 

have been identified. Crack propagation patterns in the concrete cover can be visualized. The 

amount of both concrete and steel damage is quantified. It is noted that under the severe 

earthquake, extensive corrosion may result in a brittle failure of the column without the 

development of concrete cracks. The frequency of the column drops significantly after the 

earthquakes and decreases with the increase of corrosion levels. Damage states have been 

defined in terms of the maximum normalized steel strain providing more structural details at 

each state. The seismic performance of the columns that experience a higher corrosion risk on 

one or both sides of the critical bottom region has also been investigated. It can be concluded 

that a much higher corrosion risk at the critical lower section of the column can dramatically 

compromise the seismic performance of the column, leading to complete failure under severe 

earthquakes. The longitudinal reinforcement at the bottom of these columns is very likely to 

rupture together with very high strains in the spirals and large areas of concrete spalling at the 

bottom regions. Such columns tend to fail due to lack of confinement at the critical location 

caused by corrosion-induced reinforcement degradation. These columns could perform much 

worse than a column undergoing a consistent corrosion rate at a much older age and must be 

drawn special attention to in order to prevent failure during seismic events. Thus, the damage 

states in the current study categorize them into Complete damage state, so that designers, 

inspectors or maintenance teams can be altered to the vulnerability of such columns to 

earthquake events and certain protections or special designs could be done to prevent 

catastrophic failures during seismic events. The findings of the study highlight the necessity of 
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studying the combined effects of earthquake and corrosion in seismic prone areas. The 

proposed framework is capable of predicting the seismic performance of RC columns with 

different corrosion levels at any age during their lifecycles and providing the details of damage 

extent, type and region, therefore, will provide a power tool to help improving design and 

optimizing rehabilitation strategies for RC structures. 

Multiple seismic events occurring during the lifetime of the RC structures has also been 

considered in this study. A series of full-scale bridge columns from 0 to 70 years have been 

simulated through finite element modeling. The capacities of the columns have been evaluated 

through nonlinear pushover analysis and found to be greatly influenced by the age of the 

column, i.e. the level of corrosion. The strength and stiffness drop significantly as corrosion 

level increases. Equivalent static analysis has been conducted to analyze the structural behavior 

of the columns under two earthquakes occurring at different time periods in their lifetime. The 

developed framework has been successfully transferred the residual damage from the first 

earthquake to the second earthquake and simultaneously implementing the time-dependent 

structural degradation due to chloride-induced corrosion. The type and extent of damage from 

each earthquake as well as the total damage after the two earthquakes have been obtained. The 

developed framework can provide a reliable prediction for the performance of corroded RC 

structures under multiple seismic events, therefore, will help engineers improve their designs, 

identify necessary test regions and define comprehensive test plans, as well as optimize 

rehabilitation strategies for RC structures in multi-threat areas. 
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